
A Mathematical Introduction to

Robotic Manipulation

Richard M. Murray
California Institute of Technology

Zexiang Li
Hong Kong University of Science and Technology

S. Shankar Sastry

University of California, Berkeley

c©1994, CRC Press
All rights reserved

This electronic edition is available from
http://www.cds.caltech.edu/∼murray/mlswiki.

Hardcover editions may be purchased from CRC Press,
http://www.crcpress.com/product/isbn/9780849379819.

This manuscript is for personal use only and may not be reproduced, in
whole or in part, without written consent from the publisher.

ii

To RuthAnne (RMM)

To Jianghua (ZXL)

In memory of my father (SSS)

vi

Contents

Contents vii

Preface xiii

Acknowledgements xvii

1 Introduction 1
1 Brief History . 1
2 Multifingered Hands and Dextrous Manipulation 8
3 Outline of the Book . 13

3.1 Manipulation using single robots 14
3.2 Coordinated manipulation using multifingered robot

hands . 15
3.3 Nonholonomic behavior in robotic systems 16

4 Bibliography . 18

2 Rigid Body Motion 19
1 Rigid Body Transformations 20
2 Rotational Motion in R3 22

2.1 Properties of rotation matrices 23
2.2 Exponential coordinates for rotation 27
2.3 Other representations 31

3 Rigid Motion in R3 . 34
3.1 Homogeneous representation 36
3.2 Exponential coordinates for rigid motion and twists 39
3.3 Screws: a geometric description of twists 45

4 Velocity of a Rigid Body 51
4.1 Rotational velocity 51
4.2 Rigid body velocity 53
4.3 Velocity of a screw motion 57
4.4 Coordinate transformations 58

5 Wrenches and Reciprocal Screws 61
5.1 Wrenches . 61

vii

5.2 Screw coordinates for a wrench 64
5.3 Reciprocal screws 66

6 Summary . 70
7 Bibliography . 72
8 Exercises . 73

3 Manipulator Kinematics 81
1 Introduction . 81
2 Forward Kinematics . 83

2.1 Problem statement 83
2.2 The product of exponentials formula 85
2.3 Parameterization of manipulators via twists 91
2.4 Manipulator workspace 95

3 Inverse Kinematics . 97
3.1 A planar example 97
3.2 Paden-Kahan subproblems 99
3.3 Solving inverse kinematics using subproblems . . . 104
3.4 General solutions to inverse kinematics problems . 108

4 The Manipulator Jacobian 115
4.1 End-effector velocity 115
4.2 End-effector forces 121
4.3 Singularities . 123
4.4 Manipulability . 127

5 Redundant and Parallel Manipulators 129
5.1 Redundant manipulators 129
5.2 Parallel manipulators 132
5.3 Four-bar linkage 135
5.4 Stewart platform 138

6 Summary . 143
7 Bibliography . 144
8 Exercises . 146

4 Robot Dynamics and Control 155
1 Introduction . 155
2 Lagrange’s Equations . 156

2.1 Basic formulation 157
2.2 Inertial properties of rigid bodies 160
2.3 Example: Dynamics of a two-link planar robot . . 164
2.4 Newton-Euler equations for a rigid body 165

3 Dynamics of Open-Chain Manipulators 168
3.1 The Lagrangian for an open-chain robot 168
3.2 Equations of motion for an open-chain manipulator 169
3.3 Robot dynamics and the product of exponentials

formula . 175
4 Lyapunov Stability Theory 179

viii

4.1 Basic definitions 179

4.2 The direct method of Lyapunov 181

4.3 The indirect method of Lyapunov 184

4.4 Examples . 185

4.5 Lasalle’s invariance principle 188

5 Position Control and Trajectory Tracking 189

5.1 Problem description 190

5.2 Computed torque 190

5.3 PD control . 193

5.4 Workspace control 195

6 Control of Constrained Manipulators 200

6.1 Dynamics of constrained systems 200

6.2 Control of constrained manipulators 201

6.3 Example: A planar manipulator moving in a slot . 203

7 Summary . 206

8 Bibliography . 207

9 Exercises . 208

5 Multifingered Hand Kinematics 211

1 Introduction to Grasping 211

2 Grasp Statics . 214

2.1 Contact models . 214

2.2 The grasp map . 218

3 Force-Closure . 223

3.1 Formal definition 223

3.2 Constructive force-closure conditions 224

4 Grasp Planning . 229

4.1 Bounds on number of required contacts 229

4.2 Constructing force-closure grasps 232

5 Grasp Constraints . 234

5.1 Finger kinematics 234

5.2 Properties of a multifingered grasp 237

5.3 Example: Two SCARA fingers grasping a box . . 240

6 Rolling Contact Kinematics 242

6.1 Surface models . 243

6.2 Contact kinematics 248

6.3 Grasp kinematics with rolling 253

7 Summary . 256

8 Bibliography . 257

9 Exercises . 259

ix

6 Hand Dynamics and Control 265
1 Lagrange’s Equations with Constraints 265

1.1 Pfaffian constraints 266
1.2 Lagrange multipliers 269
1.3 Lagrange-d’Alembert formulation 271
1.4 The nature of nonholonomic constraints 274

2 Robot Hand Dynamics . 276
2.1 Derivation and properties 276
2.2 Internal forces . 279
2.3 Other robot systems 281

3 Redundant and Nonmanipulable Robot Systems 285
3.1 Dynamics of redundant manipulators 286
3.2 Nonmanipulable grasps 290
3.3 Example: Two-fingered SCARA grasp 291

4 Kinematics and Statics of Tendon Actuation 293
4.1 Inelastic tendons 294
4.2 Elastic tendons . 296
4.3 Analysis and control of tendon-driven fingers . . . 298

5 Control of Robot Hands 300
5.1 Extending controllers 300
5.2 Hierarchical control structures 302

6 Summary . 311
7 Bibliography . 313
8 Exercises . 314

7 Nonholonomic Behavior in Robotic Systems 317
1 Introduction . 317
2 Controllability and Frobenius’ Theorem 321

2.1 Vector fields and flows 322
2.2 Lie brackets and Frobenius’ theorem 323
2.3 Nonlinear controllability 328

3 Examples of Nonholonomic Systems 332
4 Structure of Nonholonomic Systems 339

4.1 Classification of nonholonomic distributions 340
4.2 Examples of nonholonomic systems, continued . . 341
4.3 Philip Hall basis 344

5 Summary . 346
6 Bibliography . 347
7 Exercises . 349

8 Nonholonomic Motion Planning 355
1 Introduction . 355
2 Steering Model Control Systems Using Sinusoids 358

2.1 First-order controllable systems: Brockett’s system 358
2.2 Second-order controllable systems 361

x

2.3 Higher-order systems: chained form systems 363
3 General Methods for Steering 366

3.1 Fourier techniques 367
3.2 Conversion to chained form 369
3.3 Optimal steering of nonholonomic systems 371
3.4 Steering with piecewise constant inputs 375

4 Dynamic Finger Repositioning 382
4.1 Problem description 382
4.2 Steering using sinusoids 383
4.3 Geometric phase algorithm 385

5 Summary . 389
6 Bibliography . 390
7 Exercises . 391

9 Future Prospects 395
1 Robots in Hazardous Environments 396
2 Medical Applications for Multifingered Hands 398
3 Robots on a Small Scale: Microrobotics 399

A Lie Groups and Robot Kinematics 403
Lie Groups and Robot Kinematics403
1 Differentiable Manifolds 403

1.1 Manifolds and maps 403
1.2 Tangent spaces and tangent maps 404
1.3 Cotangent spaces and cotangent maps 405
1.4 Vector fields . 406
1.5 Differential forms 408

2 Lie Groups . 408
2.1 Definition and examples 408
2.2 The Lie algebra associated with a Lie group 409
2.3 The exponential map 412
2.4 Canonical coordinates on a Lie group 414
2.5 Actions of Lie groups 415

3 The Geometry of the Euclidean Group 416
3.1 Basic properties 416
3.2 Metric properties of SE(3) 422
3.3 Volume forms on SE(3) 430

B A Mathematica Package for Screw Calculus 435

Bibliography 441

Index 449

xi

xii

Preface

In the last two decades, there has been a tremendous surge of activity
in robotics, both at in terms of research and in terms of capturing the
imagination of the general public as to its seemingly endless and diverse
possibilities. This period has been accompanied by a technological mat-
uration of robots as well, from the simple pick and place and painting
and welding robots, to more sophisticated assembly robots for inserting
integrated circuit chips onto printed circuit boards, to mobile carts for
parts handling and delivery. Several areas of robotic automation have
now become “standard” on the factory floor and, as of the writing of
this book, the field is on the verge of a new explosion to areas of growth
involving hazardous environments, minimally invasive surgery, and micro
electro-mechanical mechanisms.

Concurrent with the growth in robotics in the last two decades has
been the development of courses at most major research universities on
various aspects of robotics. These courses are taught at both the under-
graduate and graduate levels in computer science, electrical and mechan-
ical engineering, and mathematics departments, with different emphases
depending on the background of the students. A number of excellent
textbooks have grown out of these courses, covering various topics in
kinematics, dynamics, control, sensing, and planning for robot manipu-
lators.

Given the state of maturity of the subject and the vast diversity of stu-
dents who study this material, we felt the need for a book which presents
a slightly more abstract (mathematical) formulation of the kinematics,
dynamics, and control of robot manipulators. The current book is an
attempt to provide this formulation not just for a single robot but also
for multifingered robot hands, involving multiple cooperating robots. It
grew from our efforts to teach a course to a hybrid audience of electrical
engineers who did not know much about mechanisms, computer scientists
who did not know about control theory, mechanical engineers who were
suspicious of involved explanations of the kinematics and dynamics of
garden variety open kinematic chains, and mathematicians who were cu-
rious, but did not have the time to build up lengthy prerequisites before

xiii

beginning a study of robotics.

It is our premise that abstraction saves time in the long run, in return
for an initial investment of effort and patience in learning some mathe-
matics. The selection of topics—from kinematics and dynamics of single
robots, to grasping and manipulation of objects by multifingered robot
hands, to nonholonomic motion planning—represents an evolution from
the more basic concepts to the frontiers of the research in the field. It
represents what we have used in several versions of the course which
have been taught between 1990 and 1993 at the University of California,
Berkeley, the Courant Institute of Mathematical Sciences of New York
University, the California Institute of Technology, and the Hong Kong
University of Science and Technology (HKUST). We have also presented
parts of this material in short courses at the Università di Roma, the
Center for Artificial Intelligence and Robotics, Bangalore, India, and the
National Taiwan University, Taipei, Taiwan.

The material collected here is suitable for advanced courses in robotics
consisting of seniors or first- and second-year graduate students. At a
senior level, we cover Chapters 1–4 in a twelve week period, augmenting
the course with some discussion of technological and planning issues, as
well as a laboratory. The laboratory consists of experiments involving
on-line path planning and control of a few industrial robots, and the
use of a simulation environment for off-line programming of robots. In
courses stressing kinematic issues, we often replace material from Chapter
4 (Robot Dynamics) with selected topics from Chapter 5 (Multifingered
Hand Kinematics). We have also covered Chapters 5–8 in a ten week
period at the graduate level, in a course augmented with other advanced
topics in manipulation or mobile robots.

The prerequisites that we assume are a good course in linear algebra
at the undergraduate level and some familiarity with signals and systems.
A course on control at the undergraduate level is helpful, but not strictly
necessary for following the material. Some amount of mathematical ma-
turity is also desirable, although the student who can master the concepts
in Chapter 2 should have no difficulty with the remainder of the book.

We have provided a fair number of exercises after Chapters 2–8 to help
students understand some new material and review their understanding of
the chapter. A toolkit of programs written in Mathematica for solving the
problems of Chapters 2 and 3 (and to some extent Chapter 5) have been
developed and are described in Appendix B. We have studiously avoided
numerical exercises in this book: when we have taught the course, we
have adapted numerical exercises from measurements of robots or other
“real” systems available in the laboratories. These vary from one time to
the next and add an element of topicality to the course.

The one large topic in robotic manipulation that we have not covered
in this book is the question of motion planning and collision avoidance

xiv

for robots. In our classroom presentations we have always covered some
aspects of motion planning for robots for the sake of completeness. For
graduate classes, we can recommend the recent book of Latombe on mo-
tion planning as a supplement in this regard. Another omission from this
book is sensing for robotics. In order to do justice to this material in our
respective schools, we have always had computer vision, tactile sensing,
and other related topics, such as signal processing, covered in separate
courses.

The contents of our book have been chosen from the point of view
that they will remain foundational over the next several years in the face
of many new technological innovations and new vistas in robotics. We
have tried to give a snapshot of some of these vistas in Chapter 9. In
reading this book, we hope that the reader will feel the same excitement
that we do about the technological and social prospects for the field of
robotics and the elegance of the underlying theory.

Richard Murray Berkeley, August 1993
Zexiang Li
Shankar Sastry

xv

xvi

Acknowledgments

It is a great pleasure to acknowledge the people who have collaborated
with one or more of us in the research contained in this book. A great deal
of the material in Chapters 2 and 3 is based on the Ph.D. dissertation
of Bradley Paden, now at the University of California, Santa Barbara.
The research on multifingered robot hands, on which Chapters 5 and 6
are founded, was done in collaboration with Ping Hsu, now at San Jose
State University; Arlene Cole, now at AT&T Bell Laboratories; John
Hauser, now at the University of Colorado, Boulder; Curtis Deno, now at
Intermedics, Inc. in Houston; and Kristofer Pister, now at the University
of California, Los Angeles. In the area of nonholonomic motion plan-
ning, we have enjoyed collaborating with Jean-Paul Laumond of LAAS
in Toulouse, France; Paul Jacobs, now at Qualcomm, Inc. in San Diego;
Greg Walsh, Dawn Tilbury, and Linda Bushnell at the University of Cal-
ifornia, Berkeley; Richard Montgomery of the University of California,
Santa Cruz; Leonid Gurvits of Siemens Research, Princeton; and Chris
Fernandez at New York University.

The heart of the approach in Chapters 2 and 3 of this book is a deriva-
tion of robot kinematics using the product of exponentials formalism in-
troduced by Roger Brockett of Harvard University. For this and manifold
other contributions by him and his students to the topics in kinematics,
rolling contact, and nonholonomic control, it is our pleasure to acknowl-
edge his enthusiasm and encouragement by example. In a broader sense,
the stamp of the approach that he has pioneered in nonlinear control
theory is present throughout this book.

We fondly remember the seminar given at Berkeley in 1983 by P. S.
Krishnaprasad of the University of Maryland, where he attempted to con-
vince us of the beauty of the product of exponentials formula, and the
numerous stimulating conversations with him, Jerry Marsden of Berkeley,
and Tony Bloch of Ohio State University on the many beautiful connec-
tions between classical mechanics and modern mathematics and control
theory. Another such seminar which stimulated our interest was one on
multifingered robot hands and cooperating robots given at Berkeley in
1987 by Yoshi Nakamura, now of the University of Tokyo. We have also

xvii

enjoyed discussing kinematics, optimal control, and redundant mecha-
nisms with John Baillieul of Boston University; Jeff Kerr, now of Zebra
Robotics; Mark Cutkosky of Stanford University and Robert Howe, now
of Harvard University; Dan Koditscheck, now of the University of Michi-
gan; Mark Spong of the University of Illinois at Urbana-Champaign; and
Joel Burdick and Elon Rimon at the California Institute of Technology.
Conversations with Hector Sussmann of Rutgers University and Gerardo
Lafferiere of Portland State University on nonholonomic motion planning
have been extremely stimulating as well.

Our colleagues have provided both emotional and technical support to
us at various levels of development of this material: John Canny, Charles
Desoer, David Dornfeld, Ronald Fearing, Roberto Horowitz, Jitendra
Malik, and “Tomi” Tomizuka at Berkeley; Jaiwei Hong, Bud Mishra,
Jack Schwartz, James Demmel, and Paul Wright at New York University;
Joel Burdick and Pietro Perona at Caltech; Peter Cheung, Ruey-Wen
Liu, and Matthew Yuen at HKUST; Robyn Owens at the University of
West Australia; Georges Giralt at LAAS in Toulouse, France; Dorotheè
Normand Cyrot at the LSS in Paris, France; Alberto Isidori, Marica Di
Benedetto, Alessandro De Luca, and ‘Nando’ Nicoló at the Università di
Roma; Sanjoy Mitter and Anita Flynn at MIT; Antonio Bicchi at the
Università di Pisa; M. Vidyasagar at the Center for Artificial Intelligence
and Robotics in Bangalore, India; Li-Chen Fu of the National Taiwan
University, Taipei, Taiwan; and T.-J. Tarn of Washington University.
Finally, we are grateful to Mark Spong, Kevin Dowling, and Dalila Argez
for their help with the photographs.

Our research has been generously supported by the National Science
Foundation under grant numbers DMC 84-51129, IRI 90-14490, and IRI
90-03986, nurtured especially by Howard Moraff, the Army Research Of-
fice under grant DAAL88-K-0372 monitored by Jagdish Chandra, IBM,
the AT&T Foundation, the GE Foundation, and HKUST under grant
DAG 92/93 EG23. Our home institutions at UC Berkeley, the California
Institute of Technology, and the Hong Kong University of Science and
Technology have been exemplarily supportive of our efforts, providing
the resources to help us to grow programs where there were none. We
owe a special debt of gratitude in this regard to Karl Pister, Dean of
Engineering at Berkeley until 1990.

The manuscript was classroom tested in various versions by James
Clark at Harvard, John Canny, Curtis Deno and Matthew Berkemeier
at Berkeley, and Joel Burdick at Caltech, in addition to the three of us.
Their comments have been invaluable to us in revising the early drafts.
We appreciate the detailed and thoughtful reviews by Greg Chirikjian of
Johns Hopkins, and Michael McCarthy and Frank Park of the University
of California, Irvine.

In addition, many students suffering early versions of this course have

xviii

contributed to debugging the text. They include L. Bushnell, N. Getz,
J.-P. Tennant, D. Tilbury, G. Walsh, and J. Wendlandt at Berkeley; R.
Behnken, S. Kelly, A. Lewis, S. Sur, and M. van Nieuwstadt at Caltech;
and A. Lee and J. Au of the Hong Kong University of Science and Tech-
nology. Sudipto Sur at Caltech helped develop a Mathematica package
for screw calculus which forms the heart of the software described in Ap-
pendix B. We are ultimately indebted to these and the unnamed others
for the inspiration to write this book.

Finally, on a personal note, we would like to thank our families for
their support and encouragement during this endeavor.

xix

xx

Chapter 1

Introduction

In the last twenty years, our conception and use of robots has evolved
from the stuff of science fiction films to the reality of computer-controlled
electromechanical devices integrated into a wide variety of industrial en-
vironments. It is routine to see robot manipulators being used for welding
and painting car bodies on assembly lines, stuffing printed circuit boards
with IC components, inspecting and repairing structures in nuclear, un-
dersea, and underground environments, and even picking oranges and
harvesting grapes in agriculture. Although few of these manipulators
are anthropomorphic, our fascination with humanoid machines has not
dulled, and people still envision robots as evolving into electromechanical
replicas of ourselves. While we are not likely to see this type of robot in
the near future, it is fair to say that we have made a great deal of progress
in introducing simple robots with crude end-effectors into a wide variety
of circumstances. Further, it is important to recognize that our impa-
tience with the pace of robotics research and our expectations of what
robots can and cannot do is in large part due to our lack of appreciation
of the incredible power and subtlety of our own biological motor control
systems.

1 Brief History

The word robot was introduced in 1921 by the Czech playwright Karel
Capek in his satirical play R. U. R. (Rossum’s Universal Robots), where
he depicted robots as machines which resembled people but worked tire-
lessly. In the play, the robots eventually turn against their creators and
annihilate the human race. This play spawned a great deal of further sci-
ence fiction literature and film which have contributed to our perceptions
of robots as being human-like, endowed with intelligence and even per-
sonality. Thus, it is no surprise that present-day robots appear primitive

1

Figure 1.1: The Stanford manipulator. (Courtesy of the Coordinated
Science Laboratory, University of Illinois at Urbana-Champaign)

when compared with the expectations created by the entertainment in-
dustry. To give the reader a flavor of the development of modern robotics,
we will give a much abbreviated history of the field, derived from the ac-
counts by Fu, Gonzalez, and Lee [35] and Spong and Vidyasagar [110].
We describe this roughly by decade, starting from the fifties and contin-
uing up to the eighties.

The early work leading up to today’s robots began after World War
II in the development of remotely controlled mechanical manipulators,
developed at Argonne and Oak Ridge National Laboratories for handling
radioactive material. These early mechanisms were of the master-slave
type, consisting of a master manipulator guided by the user through a
series of moves which were then duplicated by the slave unit. The slave
unit was coupled to the master through a series of mechanical linkages.
These linkages were eventually replaced by either electric or hydraulic
powered coupling in “teleoperators,” as these machines are called, made
by General Electric and General Mills. Force feedback to keep the slave
manipulator from crushing glass containers was also added to the teleop-
erators in 1949.

In parallel with the development of the teleoperators was the devel-

2

Figure 1.2: The Cincinnati Milacron T 3 (The Tomorrow Tool) robot.
(Courtesy of Cincinnati Milacron)

opment of Computer Numerically Controlled (CNC) machine tools for
accurate milling of low-volume, high-performance aircraft parts. The
first robots, developed by George Devol in 1954, replaced the master
manipulator of the teleoperator with the programmability of the CNC
machine tool controller. He called the device a “programmed articulated
transfer device.” The patent rights were bought by a Columbia Univer-
sity student, Joseph Engelberger, who later founded a company called
Unimation in Connecticut in 1956. Unimation installed its first robot in
a General Motors plant in 1961. The key innovation here was the “pro-
grammability” of the machine: it could be retooled and reprogrammed
at relatively low cost so as to enable it to perform a wide variety of
tasks. The mechanical construction of the Unimation robot arm repre-
sented a departure from conventional machine design in that it used an
open kinematic chain: that is to say, it had a cantilevered beam structure
with many degrees of freedom. This enabled the robot to access a large
workspace relative to the space occupied by the robot itself, but it cre-
ated a number of problems for the design since it is difficult to accurately
control the end point of a cantilevered arm and also to regulate its stiff-
ness. Moreover, errors at the base of the kinematic chain tended to get
amplified further out in the chain. To alleviate this problem, hydraulic
actuators capable of both high power and generally high precision were

3

Figure 1.3: The Unimation PUMA (Programmable Universal Manipula-
tor for Assembly). (Courtesy of Stäubli Unimation, Inc.)

used for the joint actuators.
The flexibility of the newly introduced robots was quickly seen to be

enhanced through sensory feedback. To this end, Ernst in 1962 devel-
oped a robot with force sensing which enabled it to stack blocks. To our
knowledge, this system was the first that involved a robot interacting
with an unstructured environment and led to the creation of the Project
MAC (Man And Computer) at MIT. Tomovic and Boni developed a pres-
sure sensor for the robot which enabled it to squeeze on a grasped object
and then develop one of two different grasp patterns. At about the same
time, a binary robot vision system which enabled the robot to respond to
obstacles in its environment was developed by McCarthy and colleagues
in 1963. Many other kinematic models for robot arms, such as the Stan-
ford manipulator, the Boston arm, the AMF (American Machine and
Foundry) arm, and the Edinburgh arm, were also introduced around this
time. Another novel robot of the period was a walking robot developed
by General Electric for the Army in 1969. Robots that responded to
voice commands and stacked randomly scattered blocks were developed
at Stanford and other places. Robots made their appearance in Japan
through Kawasaki’s acquisition of a license from Unimation in 1968.

4

Figure 1.4: The AdeptOne robot. (Courtesy of Adept Technology, Inc.)

Figure 1.5: The CMU DD Arm I. (Courtesy of M.J. Dowling)

5

Figure 1.6: The Odex I six-legged walking robot. (Photo courtesy of
Odetics, Inc.)

In 1973, the first language for programming robot motion, called
WAVE, was developed at Stanford to enable commanding a robot with
high-level commands. About the same time, in 1974, the machine tool
manufacturer Cincinnati Milacron, Inc. introduced its first computer-
controlled manipulator, called The Tomorrow Tool (T 3), which could lift
a 100 pound load as well as track moving objects on an assembly line.
Later in the seventies, Paul and Bolles showed how a Stanford arm could
assemble water pumps, and Will and Grossman endowed a robot with
touch and force sensors to assemble a twenty part typewriter. At roughly
the same time, a group at the Draper Laboratories put together a Remote
Center Compliance (RCC) device for part insertion in assembly.

In 1978, Unimation introduced a robot named the Programmable Uni-
versal Machine for Assembly (PUMA), based on a General Motors study.
Bejczy at Jet Propulsion Laboratory began a program of teleoperation
for space-based manipulators in the mid-seventies. In 1979, the SCARA
(Selective Compliant Articulated Robot for Assembly) was introduced in
Japan and then in the United States.

As applications of industrial robots grew, different kinds of robots
with attendant differences in their actuation methods were developed.

6

For light-duty applications, electrically powered robots were used both
for reasons of relative inexpensiveness and cleanliness. The difficulty with
electric motors is that they produce their maximum power at relatively
high speeds. Consequently, the motors need to be geared down for use.
This gear reduction introduces friction, backlash, and expense to the de-
sign of the motors. Consequently, the search was on to find a way of
driving the robot’s joints directly without the need to gear down its elec-
tric motors. In response to this need, a direct drive robot was developed
at Carnegie Mellon by Asada in 1981.

In the 1980s, many efforts were made to improve the performance
of industrial robots in fine manipulation tasks: active methods using
feedback control to improve positioning accuracy and program compli-
ance, and passive methods involving a mechanical redesign of the arm.
It is fair to say, however, that the eighties were not a period of great
innovation in terms of building new types of robots. The major part of
the research was dedicated to an understanding of algorithms for con-
trol, trajectory planning, and sensor aggregation of robots. Among the
first active control methods developed were efficient recursive Lagrangian
and computational schemes for computing the gravity and Coriolis force
terms in the dynamics of robots. In parallel with this, there was an effort
in exactly linearizing the dynamics of a multi-joint robot by state feed-
back, using a technique referred to as computed torque. This approach,
while computationally demanding, had the advantage of giving precise
bounds on the transient performance of the manipulator. It involved ex-
act cancellation, which in practice had to be done either approximately or
adaptively. There were may other projects on developing position/force
control strategies for robots in contact with the environment, referred to
as hybrid or compliant control. In the search for more accurately control-
lable robot manipulators, robot links were getting to be lighter and to
have harmonic drives, rather than gear trains in their joints. This made
for flexible joints and arms, which in turn necessitated the development
of new control algorithms for flexible link and flexible joint robots.

The trend in the nineties has been towards robots that are modifiable
for different assembly operations. One such robot is called Robotworld,
manufactured by Automatix, which features several four degree of free-
dom modules suspended on air bearings from the stator of a Sawyer
effect motor. By attaching different end-effectors to the ends of the mod-
ules, the modules can be modified for the assembly task at hand. In
the context of robots working in hazardous environments, great strides
have been made in the development of mobile robots for planetary ex-
ploration, hazardous waste disposal, and agriculture. In addition to the
extensive programs in reconfigurable robots and robots for hazardous en-
vironments, we feel that the field of robotics is primed today for some
large technological advances incorporating developments in sensor and

7

actuator technology at the milli- and micro-scales as well as advances
in computing and control. We defer a discussion of these prospects for
robotics to Chapter 9.

2 Multifingered Hands and Dextrous Ma-

nipulation

The vast majority of robots in operation today consist of six joints which
are either rotary (articulated) or sliding (prismatic), with a simple “end-
effector” for interacting with the workpieces. The applications range from
pick and place operations, to moving cameras and other inspection equip-
ment, to performing delicate assembly tasks involving mating parts. This
is certainly nowhere near as fancy as the stuff of early science fiction, but
is useful in such diverse arenas such as welding, painting, transportation
of materials, assembly of printed circuit boards, and repair and inspection
in hazardous environments.

The term hand or end-effector is used to describe the interface between
the manipulator (arm) and the environment, out of anthropomorphic
intent. The vast majority of hands are simple: grippers (either two- or
three-jaw), pincers, tongs, or in some cases remote compliance devices.
Most of these end-effectors are designed on an ad hoc basis to perform
specific tasks with specific parts. For example, they may have suction
cups for lifting glass which are not suitable for machined parts, or jaws
operated by compressed air for holding metallic parts but not suitable
for handling fragile plastic parts. Further, a difficulty that is commonly
encountered in applications is the clumsiness of a six degree of freedom
robot equipped only with these simple hands. The clumsiness manifests
itself in:

1. A lack of dexterity. Simple grippers enable the robot to hold parts
securely but they cannot manipulate the grasped object.

2. A limited number of possible grasps resulting in the need to change
end-effectors frequently for different tasks.

3. Large motions of the arm are sometimes needed for even small mo-
tions of the end-effector. Since the motors of the robot arm are
progressively larger away from the end-effector, the motion of the
earliest motors is slow and inefficient.

4. A lack of fine force control which limits assembly tasks to the most
rudimentary ones.

A multifingered or articulated hand offers some solutions to the prob-
lem of endowing a robot with dexterity and versatility. The ability of a

8

Swallowing

Lips

Jaw
Tongue

[Mastic
at

io
n

]
[S

al
iv

a t
i o

n
]

[

V
o

c
a

li
z

a
ti

o
n

]

Face
Eyelid and eyeballBrowNeck

Lit
tle

Ring

Fing
er

s
Middle

Index

Thumb

H
an

d

H
ip

K
nee

A
nkleToes

T
ru

nk
S

ho
ul

de
r

E
lb

ow
W

ris
t

Medial Lateral

Figure 1.7: Homunculus diagram of the motor cortex. (Reprinted, by
permission, from Kandel, Schwartz, and Jessel, Principles of Neural Sci-
ence, Third Edition [Appleton and Lange, Norwalk, CT, 1991]. Adapted
from Penfield and Rasmussen, The Cerebral Cortex of Man: A Clinical
Study of Localization of Function [Macmillan, 1950])

multifingered hand to reconfigure itself for performing a variety of differ-
ent grasps reduces the need for changing end-effectors. The large number
of lightweight actuators associated with the degrees of freedom of the
hand allows for fast, precise, and energy-efficient motions of the object
held in the hand. Fine motion force-control at a high bandwidth is also
facilitated for similar reasons. Indeed, multifingered hands are a truly
anthropomorphically motivated concept for dextrous manipulation: we
use our arms to position our hands in a given region of space and then
use our wrists and fingers to interact in a detailed and intricate way with
the environment. We preform our fingers into grasps which pinch, en-
circle, or immobilize objects, changing grasps as a consequence of these
actions. One measure of the intelligence of a member of the mammalian
family is the fraction of its motor cortex dedicated to the control of its
hands. This fraction is discerned by painstaking mapping of the body
on the motor cortex by neurophysiologists, yielding a homunculus of the
kind shown in Figure 1.7. For humans, the largest fraction (30–40%) of

9

Figure 1.8: The Utah/MIT hand. (Photo courtesy of Sarcos, Inc.)

the motor cortex is dedicated to the control of the hands, as compared
with 20–30% for most monkeys and under 10% for dogs and cats.

From a historical point of view, the first uses of multifingered hands
were in prosthetic devices to replace lost limbs. Childress [18] refers to
a device from 1509 made for a knight, von Berlichingen, who had lost
his hand in battle at an early age. This spring-loaded device was useful
in battle but was unfortunately not handy enough for everyday func-
tions. After the Berlichingen hand, numerous other hand designs have
been made from 1509 to the current time. Several of these hands are
still available today; some are passive (using springs), others are body-
powered (using arm flexion control or shrug control). Some of the hands
had the facility for voluntary closure and others involuntary closure. Chil-
dress classifies the hands into the following four types:

1. Cosmetic. These hands have no real movement and cannot be acti-
vated, but they can be used for pushing or as an opposition element
for the other hand.

2. Passive. These hands need the manual manipulation of the other
(non-prosthetic) hand to adjust the grasping of the hand. These
were the earliest hands, including the Berlichingen hand.

10

Figure 1.9: The Salisbury Hand, designed by Kenneth Salisbury. (Photo
courtesy of David Lampe, MIT)

3. Body powered. These hands use motions of the body to activate the
hand. Two of the most common schemes involve pulling a cable
when the arm is moved forward (arm-flexion control) or pulling
the cable when the shoulders are rounded (shrug control). Indeed,
one frequently observes these hands operated by an amputee using
shrugs and other such motions of her upper arm joints.

4. Externally powered. These hands obtain their energy from a stor-
age source such as a battery or compressed gas. These are yet to
displace the body-powered hands in prostheses.

Powered hand mechanisms came into vogue after 1920, but the great-
est usage of these devices has been only since the 1960s. The Belgrade
hand, developed by Tomović and Boni [113], was originally developed for
Yugoslav veterans who had lost their arms to typhus. Other hands were
invented as limb replacements for “thalidomide babies.” There has been
a succession of myoelectrically controlled devices for prostheses culminat-
ing in some advanced devices at the University of Utah [44], developed
mainly for grasping objects. While these devices are quite remarkable
mechanisms, it is fair to say that their dexterity arises from the vision-
guided feedback training of the wearer, rather than any feedback mecha-
nisms inherent in the device per se.

As in the historical evolution of robots, teleoperation in hazardous or
hard to access environments—such as nuclear, underwater, space, mining,

11

Figure 1.10: Styx, a two-fingered planar hand built at UC Berkeley in
1988.

and, recently, surgical environments—has provided a large impetus for
the development of dextrous multifingered hands. These devices enable
the operator to perform simple manipulations with her hands in a remote
environment and have the commands be relayed to a remote multifingered
manipulator. In the instance of surgery, the remote manipulator is a
surgical device located inside the body of the patient.

There have been many attempts to devise multifingered hands for
research use which are somewhere between teleoperation, prosthesis, and
dextrous end-effectors. These hands truly represent our dual point of
view in terms of jumping back and forth from an anthropomorphic point
of view (mimicking our own hands) to the point of view of intelligent
end-effectors (for endowing our robots with greater dexterity). Some
examples of research on multifingered hands can be found in the work
of Skinner [106], Okada [84], and Hanafusa and Asada [39]. The Okada
hand was a three-fingered cable-driven hand which accomplished tasks
such as attaching a nut to a bolt. Hanafusa and Asada’s hand has three
elastic fingers driven by a single motor with three claws for stably grasping
several oddly shaped objects.

Later multifingered hands include the Salisbury Hand (also known
as the Stanford/JPL hand) [69], the Utah/MIT hand [44], the NYU
hand [24], and the research hand Styx [76]. The Salisbury hand is a
three-fingered hand; each finger has three degrees of freedom and the
joints are all cable driven. The placement of the fingers consists of one

12

finger (the thumb) opposing the other two. The Utah/MIT hand has
four fingers (three fingers and a thumb) in a very anthropomorphic con-
figuration; each finger has four degrees of freedom and the hand is cable
driven. The difference in actuation between the Salisbury Hand and the
Utah/MIT hand is in how the cables (tendons) are driven: the first uses
electric motors and the second pneumatic pistons. The NYU hand is a
non-anthropomorphic planar hand with four fingers moving in a plane,
driven by stepper motors. Styx was a two-fingered hand with each finger
having two joints, all direct driven. Like the NYU hand, Styx was used
as a test bed for performing control experiments on multifingered hands.

At the current time, several kinds of multifingered hands at differ-
ent scales—down to millimeters and even micrometers—are either being
developed or put in use. Some of them are classified merely as custom
or semi-custom end-effectors. A recent multifingered hand developed in
Pisa is used for picking oranges in Sicily, another developed in Japan is
used to play a piano! One of the key stumbling blocks to the development
of lightweight hands has been lightweight high-torque motors. In this re-
gard, muscle-like actuators, inch-worm motors, and other novel actuator
technologies have been proposed and are currently being investigated.
One future application of multifingered robot hands which relies on these
technologies is in minimally invasive surgery. This application is further
discussed in Chapter 9.

3 Outline of the Book

This book is organized into eight chapters in addition to this one. Most
chapters contain a summary section followed by a set of exercises. We
have deliberately not included numerical exercises in this book. In teach-
ing this material, we have chosen numbers for our exercises based on
some robot or other physical situation in the laboratory. We feel this
adds greater realism to the numbers.

Chapter 2 is an introduction to rigid body motion. In this chapter, we
present a geometric view to understanding translational and rotational
motion of a rigid body. While this is one of the most ubiquitous topics
encountered in textbooks on mechanics and robotics, it is also perhaps
one of the most frequently misunderstood. The simple fact is that the
careful description and understanding of rigid body motion is subtle. The
point of view in this chapter is classical, but the mathematics modern.
After defining rigid body rotation, we introduce the use of the expo-
nential map to represent and coordinatize rotations (Euler’s theorem),
and then generalize to general rigid motions. In so doing, we introduce
the notion of screws and twists, and describe their relationship with ho-
mogeneous transformations. With this background, we begin the study
of infinitesimal rigid motions and introduce twists for representing rigid

13

body velocities. The dual of the theory of twists is covered in a section
on wrenches, which represent generalized forces. The chapter concludes
with a discussion of reciprocal screws. In classroom teaching, we have
found it important to cover the material of Chapter 2 at a leisurely pace
to let students get a feel for the subtlety of understanding rigid body
motion.

The theory of screws has been around since the turn of the century,
and Chasles’ theorem and its dual, Poinsot’s theorem, are even more
classical. However, the treatment of the material in this chapter eas-
ily extends to other more abstract formulations which are also useful
in thinking about problems of manipulation. These are covered in Ap-
pendix A.

The rest of the material in the book may be subdivided into three
parts: an introduction to manipulation for single robots, coordinated ma-
nipulation using a multifingered robot hand, and nonholonomic motion
planning. We will discuss the outline of each part in some detail.

3.1 Manipulation using single robots

Chapter 3 contains the description of manipulator kinematics for a single
robot. This is the description of the position and orientation of the end-
effector or gripper in terms of the angles of the joints of the robot. The
form of the manipulator kinematics is a natural outgrowth of the exponen-
tial coordinatization for rigid body motion of Chapter 2. We prove that
the kinematics of open-link manipulators can be represented as a product
of exponentials. This formalism, first pointed out by Brockett [12], is el-
egant and combines within it a great deal of the analytical sophistication
of Chapter 2. Our treatment of kinematics is something of a deviation
from most other textbooks, which prefer a Denavit-Hartenberg formula-
tion of kinematics. The payoff for the product of exponentials formalism
is shown in this chapter in the context of an elegant formulation of a
set of canonical problems for solving the inverse kinematics problem: the
problem of determining the joint angles given the position and orienta-
tion of the end-effector or gripper of the robot. These problems, first
formulated by Paden and Kahan [85], enable a precise determination of
all of the multiple inverse kinematic solutions for a large number of indus-
trial robots. The extension of this approach to the inverse kinematics of
more general robots actually needs some recent techniques from classical
algebraic geometry, which we discuss briefly.

Another payoff of using the product of exponentials formula for kine-
matics is the ease of differentiating the kinematics to obtain the manipu-
lator Jacobian. The columns of the manipulator Jacobian have the inter-
pretation of being the twist axes of the manipulator. As a consequence, it
is easy to geometrically characterize and describe the singularities of the
manipulator. The product of exponentials formula is also used for deriv-

14

ing the kinematics of robots with one or more closed kinematic chains,
such as a Stewart platform or a four-bar planar linkage.

Chapter 4 is a derivation of the dynamics and control of single robots.
We start with a review of the Lagrangian equations of motion for a system
of rigid bodies. We also specialize these equations to derive the Newton-
Euler equations of motion of a rigid body. As in Chapter 2, this material
is classical but is covered in a modern mathematical geometric frame-
work. Using once again the product of exponentials formula, we derive
the Lagrangian of an open-chain manipulator and show how the geomet-
ric structure of the kinematics reflects into the form of the Lagrangian of
the manipulator.

Finally, we review the basics of Lyapunov theory to provide some
machinery for proving the stability of the control schemes that we will
present in this book. We use this to prove the stability of two classes
of control laws for single manipulators: the computed torque control law
and the so-called PD (for proportional + derivative) control law for single
manipulators.

3.2 Coordinated manipulation using multifingered robot

hands

Chapter 5 is an introduction to the kinematics of grasping. Beginning
with a review of models of contact types, we introduce the notion of a
grasp map, which expresses the relationship between the forces applied by
the fingers contacting the object and their effect at the center of mass of
the object. We characterize what are referred to as stable grasps or force-
closure grasps. These are grasps which immobilize an object robustly.
Using this characterization, we discuss how to construct force-closure
grasps using an appropriate positioning of the fingers on the surface of
the object.

The first half of the chapter deals with issues of force exerted on the
object by the fingers. The second half deals with the dual issue of how
the movements of the grasped object reflect the movements of the fingers.
This involves the interplay between the qualities of the grasp and the
kinematics of the fingers (which are robots in their own right) grasping the
object. A definition dual to that of force-closure, called manipulability,
is defined and characterized. Finally, we discuss the rolling of fingertips
on the surface of an object. This is an important way of repositioning
fingers on the surface of an object so as to improve a grasp and may be
necessitated by the task to be performed using the multifingered hand.

Chapter 6 is a derivation of the dynamics and control for multifingered
robot hands. The derivation of the kinematic equations for a multifin-
gered hand is an exercise in writing equations for robotic systems with
constraints, namely the constraints imposed by the grasp. We develop the

15

necessary mathematical machinery for writing the Lagrangian equations
for systems with so-called Pfaffian constraints. There is a preliminary dis-
cussion of why these Pfaffian or velocity constraints cannot be simplified
to constraints on the configuration variables of the system alone. Indeed,
this is the topic of Chapters 7 and 8. We use our formalism to write the
equations of motion for a multifingered hand system. We show connec-
tions between the form of these equations and the dynamical equations
for a single robot. The dynamical equations are particularly simple when
the grasps are nonredundant and manipulable. In the instance that the
grasps are either redundant or nonmanipulable, some substantial changes
need to be made to their dynamics. Using the form of dynamical equa-
tions for the multifingered hand system, we propose two separate sets of
control laws which are reminiscent of those of the single robot, namely
the computed torque control law and the PD control law, and prove their
performance.

A large number of multifingered hands, including those involved in the
study of our own musculo-skeletal system, are driven not by motors but
by networks of tendons. In this case, the equations of motion need to be
modified to take into account this mechanism of force generation at the
joints of the fingers. This chapter develops the dynamics of tendon-driven
robot hands.

Another important topic to be considered in the control of systems
of many degrees of freedom, such as the multifingered robot hand, is the
question of the hierarchical organization of the control. The computed
torque and PD control law both suffer from the drawback of being com-
putationally expensive. One could conceive that a system with hundreds
of degrees of freedom, such as the mammalian musculo-skeletal system,
has a hierarchical organization with coarse control at the cortical level
and progressively finer control at the spinal and muscular level. This hi-
erarchical organization is key to organizing a fan-out of commands from
the higher to the lower levels of the hierarchy and is accompanied by a
fan-in of sensor data from the muscular to the cortical level. We have
tried to answer the question of how one might try to develop an envi-
ronment of controllers for a multifingered robotic system so as to take
into account this sort of hierarchical organization by way of a sample
multi-robot control programming paradigm that we have developed here.

3.3 Nonholonomic behavior in robotic systems

In Chapter 6, we run into the question of how to deal with the presence
of Pfaffian constraints when writing the dynamical equations of a mul-
tifingered robot hand. In that chapter, we show how to incorporate the
constraints into the Lagrangian equations. However, one question that
is left unanswered in that chapter is the question of trajectory planning
for the system with nonholonomic constraints. In the instance of a mul-

16

tifingered hand grasping an object, we give control laws for getting the
grasped object to follow a specified position and orientation. However,
if the fingertips are free to roll on the surface of the object, it is not
explicitly possible for us to control the locations to which they roll us-
ing only the tools of Chapter 6. In particular, we are not able to give
control strategies for moving the fingers from one contact location to an-
other. Motivated by this observation, we begin a study of nonholonomic
behavior in robotic systems in Chapter 7.

Nonholonomic behavior can arise from two different sources: bodies
rolling without slipping on top of each other, or conservation of angular
momentum during the motion. In this chapter, we expand our horizons
beyond multifingered robot hands and give yet other examples of non-
holonomic behavior in robotic systems arising from rolling: car parking,
mobile robots, space robots, and a hopping robot in the flight phase. We
discuss methods for classifying these systems, understanding when they
are partially nonholonomic (or nonintegrable) and when they are holo-
nomic (or integrable). These methods are drawn from some rudimentary
notions of differential geometry and nonlinear control theory (controlla-
bility) which we develop in this chapter. The connection between non-
holonomy of Pfaffian systems and controllability is one of duality, as is
explained in this chapter.

Chapter 8 contains an introduction to some methods of motion plan-
ning for systems with nonholonomic constraints. This is the study of
trajectory planning for nonholonomic systems consistent with the con-
straints on the system. This is a very rapidly growing area of research in
robotics and control. We start with an overview of existing techniques
and then we specialize to some methods of trajectory planning. We begin
with the role of sinusoids in generating Lie bracket motions in nonholo-
nomic systems. This is motivated by some solutions to optimal control
problems for a simple class of model systems. Starting from this class
of model systems, we show how one can generalize this class of model
systems to a so-called chain form variety. We then discuss more general
methods for steering nonholonomic systems using piecewise constant con-
trols and also Ritz basis functions. We apply our methods to the examples
presented in the previous chapter. We finally return to the question of
dynamic finger repositioning on the surface of a grasped object and give
a few different techniques for rolling fingers on the surface of a grasped
object from one grasp to another.

Chapter 9 contains a description of some of the growth areas in
robotics from a technological point of view. From a research and an
analytical point of view, we hope that the book in itself will convince
the reader of the many unexplored areas of our understanding of robotic
manipulation.

17

4 Bibliography

It is a tribute to the vitality of the field that so many textbooks and books
on robotics have been written in the last fifteen years. It is impossible to
do justice or indeed to list them all here. We just mention some that we
are especially familiar with and apologize to those whom we omit to cite.

One of the earliest textbooks in robotics is by Paul [90], on the math-
ematics, programming, and control of robots. It was followed in quick
succession by the books of Gorla and Renaud [36], Craig [21], and Fu,
Gonzalez and Lee [35]. The first two concentrated on the mechanics, dy-
namics, and control of single robots, while the third also covered topics
in vision, sensing, and intelligence in robots. The text by Spong and
Vidyasagar [110] gives a leisurely discussion of the dynamics and control
of robot manipulators. Also significant is the set of books by Coiffet [20],
Asada and Slotine [2], and Koivo [52]. As this book goes to print, we are
aware also of a soon to be completed new textbook by Siciliano and Sci-
avicco. An excellent perspective of the development of control schemes
for robots is provided by the collection of papers edited by Spong, Lewis
and Abdallah [109].

The preceding were books relevant to single robots. The first mono-
graph on multifingered robot hands was that of Mason and Salisbury [69],
which covered some details of the formulation of grasping and substan-
tial details of the design and control of the Salisbury three-fingered hand.
Other books in the area since then have included the monographs by
Cutkosky [22] and by Nakamura [79], and the collection of papers edited
by Venkataraman and Iberall [116].

There are a large number of collections of edited papers on robotics.
Some recent ones containing several interesting papers are those edited
by Brockett [13], based on the contents of a short course of the American
Mathematics Society in 1990; and a collection of papers on all aspects
of manipulation edited Spong, Lewis, and Abdallah [109]; and a recent
collection of papers on nonholonomic motion planning edited by Li and
Canny [61], based on the contents of a short course at the 1991 IEEE
International Conference on Robotics and Automation.

Not included in this brief bibliographical survey are books on com-
puter vision or mobile robots which also have witnessed a flourish of
activity.

18

Chapter 2

Rigid Body Motion

A rigid motion of an object is a motion which preserves distance between
points. The study of robot kinematics, dynamics, and control has at its
heart the study of the motion of rigid objects. In this chapter, we provide
a description of rigid body motion using the tools of linear algebra and
screw theory.

The elements of screw theory can be traced to the work of Chasles
and Poinsot in the early 1800s. Chasles proved that a rigid body can
be moved from any one position to any other by a movement consisting
of rotation about a straight line followed by translation parallel to that
line. This motion is what we refer to in this book as a screw motion. The
infinitesimal version of a screw motion is called a twist and it provides a
description of the instantaneous velocity of a rigid body in terms of its
linear and angular components. Screws and twists play a central role in
our formulation of the kinematics of robot mechanisms.

The second major result upon which screw theory is founded concerns
the representation of forces acting on rigid bodies. Poinsot is credited
with the discovery that any system of forces acting on a rigid body can
be replaced by a single force applied along a line, combined with a torque
about that same line. Such a force is referred to as a wrench. Wrenches
are dual to twists, so that many of the theorems which apply to twists
can be extended to wrenches.

Using the theorems of Chasles and Poinsot as a starting point, Sir
Robert S. Ball developed a complete theory of screws which he published
in 1900 [6]. In this chapter, we present a more modern treatment of the
theory of screws based on linear algebra and matrix groups. The funda-
mental tools are the use of homogeneous coordinates to represent rigid
motions and the matrix exponential, which maps a twist into the corre-
sponding screw motion. In order to keep the mathematical prerequisites
to a minimum, we build up this theory assuming only a good knowledge
of basic linear algebra. A more abstract version, using the tools of matrix

19

Lie groups and Lie algebras, can be found in Appendix A.
There are two main advantages to using screws, twists, and wrenches

for describing rigid body kinematics. The first is that they allow a global
description of rigid body motion which does not suffer from singularities
due to the use of local coordinates. Such singularities are inevitable when
one chooses to represent rotation via Euler angles, for example. The sec-
ond advantage is that screw theory provides a very geometric description
of rigid motion which greatly simplifies the analysis of mechanisms. We
will make extensive use of the geometry of screws throughout the book,
and particularly in the next chapter when we study the kinematics and
singularities of mechanisms.

1 Rigid Body Transformations

The motion of a particle moving in Euclidean space is described by
giving the location of the particle at each instant of time, relative to
an inertial Cartesian coordinate frame. Specifically, we choose a set of
three orthonormal axes and specify the particle’s location using the triple
(x, y, z) ∈ R3, where each coordinate gives the projection of the parti-
cle’s location onto the corresponding axis. A trajectory of the particle is
represented by the parameterized curve p(t) = (x(t), y(t), z(t)) ∈ R3.

In robotics, we are frequently interested not in the motion of individ-
ual particles, but in the collective motion of a set of particles, such as the
link of a robot manipulator. To this end, we loosely define a perfectly
rigid body as a completely “undistortable” body. More formally, a rigid
body is a collection of particles such that the distance between any two
particles remains fixed, regardless of any motions of the body or forces
exerted on the body. Thus, if p and q are any two points on a rigid body
then, as the body moves, p and q must satisfy

‖p(t)− q(t)‖ = ‖p(0)− q(0)‖ = constant.

A rigid motion of an object is a continous movement of the particles
in the object such that the distance between any two particles remains
fixed at all times. The net movement of a rigid body from one location
to another via a rigid motion is called a rigid displacement. In general,
a rigid displacement may consist of both translation and rotation of the
object.

Given an object described as a subset O of R3, a rigid motion of an
object is represented by a continuous family of mappings g(t) : O → R3

which describe how individual points in the body move as a function of
time, relative to some fixed Cartesian coordinate frame. That is, if we
move an object along a continuous path, g(t) maps the initial coordinates
of a point on the body to the coordinates of that same point at time t. A
rigid displacement is represented by a single mapping g : O → R3 which

20

maps the coordinates of points in the rigid body from their initial to final
configurations.

Given two points p, q ∈ O, the vector v ∈ R3 connecting p to q is
defined to be the directed line segment going from p to q. In coordinates
this is given by v = q − p with p, q ∈ R3. Though both points and vec-
tors are represented by 3-tuples of numbers, they are conceptually quite
different. A vector has a direction and a magnitude. (By the magnitude
of a vector, we will mean its Euclidean norm, i.e.,

√
v2
1 + v2

2 + v2
3 .) It

is, however, not attached to the body, since there may be other pairs of
points on the body, for instance r and s with q− p = s− r, for which the
same vector v also connects r to s. A vector is sometimes called a free
vector to indicate that it can be positioned anywhere in space without
changing its meaning.

The action of a rigid transformation on points induces an action on
vectors in a natural way. If we let g : O → R3 represent a rigid displace-
ment, then vectors transform according to

g∗(v) = g(q)− g(p).

Note that the right-hand side is the difference of two points and is hence
also a vector.

Since distances between points on a rigid body are not altered by rigid
motions, a necessary condition for a mapping g : O → R3 to describe a
rigid motion is that distances be preserved by the mapping. However,
this condition is not sufficient since it allows internal reflections, which are
not physically realizable. That is, a mapping might preserve distance but
not preserve orientation. For example, the mapping (x, y, z) 7→ (x, y,−z)
preserves distances but reflects points in the body about the xy plane.
To eliminate this possibility, we require that the cross product between
vectors in the body also be preserved. We will collect these requirements
to define a rigid body transformation as a mapping from R3 to R3 which
represents a rigid motion:

Definition 2.1. Rigid body transformation
A mapping g : R3 → R3 is a rigid body transformation if it satisfies the
following properties:

1. Length is preserved: ‖g(p)−g(q)‖ = ‖p−q‖ for all points p, q ∈ R3.

2. The cross product is preserved: g∗(v × w) = g∗(v) × g∗(w) for all
vectors v, w ∈ R3.

There are some interesting consequences of this definition. The first
is that the inner product is preserved by rigid body transformations. One
way to show this is to use the polarization identity,

vT1 v2 =
1

4
(||v1 + v2||2 − ||v1 − v2||2),

21

and the fact that

‖v1 + v2‖ = ‖g∗(v1) + g∗(v2)‖ ‖v1 − v2‖ = ‖g∗(v1)− g∗(v2)‖

to conclude that for any two vectors v1, v2,

vT1 v2 = g∗(v1)
T g∗(v2).

In particular, orthogonal vectors are transformed to orthogonal vectors.
Coupled with the fact that rigid body transformations also preserve the
cross product (property 2 of the definition above), we see that rigid body
transformations take orthonormal coordinate frames to orthonormal co-
ordinate frames.

The fact that the distance between points and cross product between
vectors is fixed does not mean that it is inadmissible for particles in a
rigid body to move relative to each other, but rather that they can rotate
but not translate with respect to each other. Thus, to keep track of the
motion of a rigid body, we need to keep track of the motion of any one
particle on the rigid body and the rotation of the body about this point.
In order to do this, we represent the configuration of a rigid body by
attaching a Cartesian coordinate frame to some point on the rigid body
and keeping track of the motion of this body coordinate frame relative
to a fixed frame. The motion of the individual particles in the body can
then be retrieved from the motion of the body frame and the motion of
the point of attachment of the frame to the body. We shall require that
all coordinate frames be right-handed: given three orthonormal vectors
x,y, z ∈ R3 which define a coordinate frame, they must satisfy z = x×y.

Since a rigid body transformation g : R3 → R3 preserves the cross
product, right-handed coordinate frames are transformed to right-handed
coordinate frames. The action of a rigid transformation g on the body
frame describes how the body frame rotates as a consequence of the
rigid motion. More precisely, if we describe the configuration of a rigid
body by the right-handed frame given by the vectors v1, v2, v3 attached
to a point p, then the configuration of the rigid body after the rigid
body transformation g is given by the right-handed frame of vectors
g∗(v1), g∗(v2), g∗(v3) attached to the point g(p).

The remainder of this chapter is devoted to establishing more detailed
properties, characterizations, and representations of rigid body transfor-
mations and providing the necessary mathematical preliminaries used in
the remainder of the book.

2 Rotational Motion in RRRR
3

We begin the study of rigid body motion by considering, at the outset,
only the rotational motion of an object. We describe the orientation of

22

z

yabx

xab
y

zab

q

Figure 2.1: Rotation of a rigid object about a point. The dotted coordi-
nate frame is attached to the rotating rigid body.

the body by giving the relative orientation between a coordinate frame
attached to the body and a fixed or inertial coordinate frame. From now
on, all coordinate frames will be right-handed unless stated otherwise.
Let A be the inertial frame, B the body frame, and xab,yab, zab ∈ R3

the coordinates of the principal axes of B relative to A (see Figure 2.1).
Stacking these coordinate vectors next to each other, we define a 3 × 3
matrix:

Rab =
[
xab yab zab

]
.

We call a matrix constructed in this manner a rotation matrix: every
rotation of the object relative to the ground corresponds to a matrix of
this form.

2.1 Properties of rotation matrices

A rotation matrix has two key properties that follow from its construc-
tion. Let R ∈ R3×3 be a rotation matrix and r1, r2, r3 ∈ R3 be its
columns. Since the columns of R are mutually orthonormal, it follows
that

rTi rj =

{
0, if i 6= j

1, if i = j.

As conditions on the matrix R, these properties can be written as

RRT = RTR = I. (2.1)

From this it follows that
detR = ±1.

To determine the sign of the determinant of R, we recall from linear
algebra that

detR = rT1 (r2 × r3).

23

Since the coordinate frame is right-handed, we have that r2 × r3 = r1 so
that detR = rT1 r1 = 1. Thus, coordinate frames corresponding to right-
handed frames are represented by orthogonal matrices with determinant
1. The set of all 3 × 3 matrices which satisfy these two properties is
denoted SO(3). The notation SO abbreviates special orthogonal. Special
refers to the fact that detR = +1 rather than ±1.

More generally, we may define the space of rotation matrices in Rn×n

by
SO(n) = {R ∈ Rn×n : RRT = I,detR = +1}. (2.2)

We will be primarily interested in n = 3, although the n = 2 case (planar
rotations) will also prove useful and is explored in the exercises.

SO(3) ⊂ R3×3 is a group under the operation of matrix multiplication.
A set G together with a binary operation ◦ defined on elements of G is
called a group if it satisfies the following axioms:

1. Closure: If g1, g2 ∈ G, then g1 ◦ g2 ∈ G.

2. Identity: There exists an identity element, e, such that g ◦ e =
e ◦ g = g for every g ∈ G.

3. Inverse: For each g ∈ G, there exists a (unique) inverse, g−1 ∈ G,
such that g ◦ g−1 = g−1 ◦ g = e.

4. Associativity: If g1, g2, g3 ∈ G, then (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

In the instance of SO(3), note that

1. If R1, R2 ∈ SO(3), then R1R2 ∈ SO(3) since

R1R2(R1R2)
T = R1R2R

T
2 R

T
1 = R1R

T
1 = I

det(R1R2) = det(R1) det(R2) = +1.

2. The identity matrix is the identity element.

3. By equation (2.1) it follows that the inverse of R ∈ SO(3) is RT ∈
SO(3).

4. The associativity of the group operation follows from the associa-
tivity of matrix multiplication; that is, (R1R2)R3 = R1(R2R3).

Thus, SO(3) is a group using the identity matrix I as the identity element
and matrix multiplication as the group operation. We refer to SO(3) as
the rotation group of R3.

Every configuration of a rigid body that is free to rotate relative to
a fixed frame can be identified with a unique R ∈ SO(3). Under this
identification, the rotation group SO(3) is referred to as the configuration
space of the system and a trajectory of the system is a curve R(t) ∈ SO(3)

24

for t ∈ [0, T]. More generally, we shall call a set Q a configuration space
for a system if every element x ∈ Q corresponds to a valid configuration
of the system and each configuration of the system can be identified with
a unique element of Q.

A rotation matrix R ∈ SO(3) also serves as a transformation, taking
coordinates of a point from one frame to another. Consider the point q
shown in Figure 2.1. Let qb = (xb, yb, zb) be the coordinates of q relative
to frame B. The coordinates of q relative to frame A can be computed as
follows: since xb, yb, zb ∈ R are projections of q onto the coordinate axes
of B, which, in turn, have coordinates xab,yab, zab ∈ R3 with respect to
A, the coordinates of q relative to frame A are given by

qa = xabxb + yabyb + zabzb.

This can be rewritten as

qa =
[
xab yab zab

]



xb
yb
zb



 = Rabqb.

In other words, Rab, when considered as a map from R3 to R3, rotates
the coordinates of a point from frame B to frame A.

The action of a rotation matrix on a point can be used to define the
action of the rotation matrix on a vector. Let vb be a vector in the frame
B defined as vb = qb − pb. Then,

Rab(vb) := Rabqb −Rabpb = qa − pa = va.

Since matrix multiplication is linear, it may be verified that if vb = qb −
pb = sb − rb then we still have that

Rabsb −Rabrb = Rabqb −Rabpb = va

and hence the action of Rab on a vector is well defined.
Rotation matrices can be combined to form new rotation matrices

using matrix multiplication. If a frame C has orientation Rbc relative to
a frame B, and B has orientation Rab relative to another frame A, then
the orientation of C relative to A is given by

Rac = RabRbc. (2.3)

Rac, when considered as a map from R3 to R3, rotates the coordinates of
a point from frame C to frame A by first rotating from C to B and then
from B to A. Equation (2.3) is the composition rule for rotations.

A rotation matrix represents a rigid body transformation in the sense
of the definition of the previous section. This is to say, it preserves
distance and orientation. We prove this using some algebraic properties

25

of the cross product operation between two vectors. Recall that the cross
product between two vectors a, b ∈ R3 is defined as

a× b =




a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1



 .

Since the cross product by a is a linear operator, b 7→ a × b may be
represented using a matrix. Defining

(a)∧ =




0 −a3 a2

a3 0 −a1

−a2 a1 0



 , (2.4)

we can write

a× b = (a)∧b. (2.5)

We will often use the notation â as a replacement for (a)∧.

Lemma 2.1. Given R ∈ SO(3) and v, w ∈ R3, the following properties
hold:

R(v × w) = (Rv)× (Rw) (2.6)

R(w)∧RT = (Rw)∧. (2.7)

The first property in the lemma asserts that rotation by the matrix R
commutes with the cross product operation; that is, the rotation of the
cross product of two vectors is the cross product of the rotation of each
of the vectors by R. The second property has an interpretation in terms
of rotation of an instantaneous axis of rotation, which will become clear
shortly. For now, we will merely use it as an algebraic fact. The proof of
the lemma is by calculation.

Proposition 2.2. Rotations are rigid body transformations
A rotation R ∈ SO(3) is a rigid body transformation; that is,

1. R preserves distance: ‖Rq −Rp‖ = ‖q − p‖ for all q, p ∈ R3.

2. R preserves orientation: R(v × w) = Rv ×Rw for all v, w ∈ R3.

Proof. Property 1 can be verified by direct calculation:

‖Rq −Rp‖2 = (R(q − p))T (R(q − p)) = (q − p)TRTR(q − p)
= (q − p)T (q − p) = ‖q − p‖2.

Property 2 follows from equation (2.6).

26

q(0)

ω
q(t)

Figure 2.2: Tip point trajectory generated by rotation about the ω-axis.

2.2 Exponential coordinates for rotation

A common motion encountered in robotics is the rotation of a body about
a given axis by some amount. For example, we might wish to describe the
rotation of the link of a robot about a fixed axis, as shown in Figure 2.2.
Let ω ∈ R3 be a unit vector which specifies the direction of rotation and
let θ ∈ R be the angle of rotation in radians. Since every rotation of the
object corresponds to some R ∈ SO(3), we would like to write R as a
function of ω and θ.

To motivate our derivation, consider the velocity of a point q attached
to the rotating body. If we rotate the body at constant unit velocity about
the axis ω, the velocity of the point, q̇, may be written as

q̇(t) = ω × q(t) = ω̂q(t). (2.8)

This is a time-invariant linear differential equation which may be inte-
grated to give

q(t) = ebωtq(0),

where q(0) is the initial (t = 0) position of the point and ebωt is the matrix
exponential

ebωt = I + ω̂t+
(ω̂t)

2

2!
+

(ω̂t)
3

3!
+ · · ·

It follows that if we rotate about the axis ω at unit velocity for θ units
of time, then the net rotation is given by

R(ω, θ) = ebωθ. (2.9)

From its definition, it is easy to see that the matrix ω̂ is a skew-
symmetric matrix, i.e., it satisfies ω̂T = −ω̂. The vector space of all 3×3

27

skew matrices is denoted so(3) and more generally the space of n × n
skew-symmetric matrices is

so(n) = {S ∈ Rn×n : ST = −S}. (2.10)

(The reason for the notation so(n) will become clear shortly.) As with
SO(n), the cases we are interested in are n = 2 and n = 3. We concen-
trate on n = 3 here and explore n = 2 in the exercises.

The set so(3) ⊂ R3×3 is a vector space over the reals. Thus, the sum
of two elements of so(3) is an element of so(3) and the scalar multiple of
any element of so(3) is an element of so(3). Furthermore, we can identify
so(3) with R3 using the relationship (2.4) and the fact (v+w)∧ = v̂+ ŵ.

It will be convenient to represent a skew-symmetric matrix as the
product of a unit skew-symmetric matrix and a real number. Given a
matrix ω̂ ∈ so(3), ‖ω‖ = 1, and a real number θ ∈ R, we write the
exponential of ω̂θ as

exp(ω̂θ) = ebωθ = I + θω̂ +
θ2

2!
ω̂2 +

θ3

3!
ω̂3 + . . . (2.11)

Equation (2.11) is an infinite series and, hence, not useful from a compu-
tational standpoint. To obtain a closed-form expression for exp(ω̂θ), we
make use of the following formulas for powers of â, which are verified by
direct calculation.

Lemma 2.3. Given â ∈ so(3), the following relations hold:

â2 = aaT − ‖a‖2I (2.12)

â3 = −‖a‖2â (2.13)

and higher powers of â can be calculated recursively.

Utilizing this lemma with a = ωθ, ‖ω‖ = 1, equation (2.11) becomes

ebωθ = I +

(
θ − θ3

3!
+
θ5

5!
− · · ·

)
ω̂ +

(
θ2

2!
− θ4

4!
+
θ6

6!
− · · ·

)
ω̂2

and hence

ebωθ = I + ω̂ sin θ + ω̂2(1− cos θ) (2.14)

This formula, commonly referred to as Rodrigues’ formula, gives an effi-
cient method for computing exp(ω̂θ). When ‖ω‖ 6= 1, it may be verified
(see Exercise 12) that

ebωθ = I +
ω̂

‖ω‖ sin(‖ω‖θ) +
ω̂2

‖ω‖2
(
1− cos(‖ω‖θ)

)
.

We now verify that exp(ω̂θ) is indeed a rotation matrix.

28

Proposition 2.4. Exponentials of skew matrices are orthogonal
Given a skew-symmetric matrix ω̂ ∈ so(3) and θ ∈ R,

ebωθ ∈ SO(3).

Proof. Defining R := exp(ω̂θ), we must verify that RTR = I and detR =
+1. To verify the first property, we have the following chain of equalities,
which can be checked using equation (2.14),

[
ebωθ
]−1

= e−bωθ = ebωT θ =
[
ebωθ
]T
.

Thus R−1 = RT and consequently RTR = I as desired. From this, it
follows that detR = ±1. Using the continuity of the determinant as
a function of the entries of a matrix, combined with continuity of the
exponential map and the fact that det exp(0) = 1, we conclude that
detR = +1.

Proposition 2.4 asserts that the exponential map transforms skew-
symmetric matrices into orthogonal matrices. Geometrically, the skew-
symmetric matrix corresponds to an axis of rotation (via the mapping
ω 7→ ω̂) and the exponential map generates the rotation corresponding
to rotation about the axis by a specified amount θ. This relationship
between skew-symmetric matrices and orthogonal matrices explains, in
part, the notation so(3). We will now show that every rotation matrix
can be represented as the matrix exponential of some skew-symmetric
matrix; that is, the map exp : so(3)→ SO(3) is surjective (onto).

Proposition 2.5. The exponential map is surjective onto SO(3)
Given R ∈ SO(3), there exists ω ∈ R3, ‖ω‖ = 1 and θ ∈ R such that
R = exp(ω̂θ).

Proof. The proof is constructive. We equate terms of R and exp(ω̂θ)
and solve the corresponding equations. By way of notation, we have the
rotation matrix R to be

R =




r11 r12 r13
r21 r22 r23
r31 r32 r33



 . (2.15)

Defining vθ = 1 − cos θ, cθ = cos θ, and sθ = sin θ, write equation (2.14)

29

as

ebωθ = I + ω̂ sin θ + ω̂2(1− cos θ)

=




1− vθ(ω2

2 + ω2
3) ω1ω2vθ − ω3sθ ω1ω3vθ + ω2sθ

ω1ω2vθ + ω3sθ 1− vθ(ω2
1 + ω2

3) ω2ω3vθ − ω1sθ
ω1ω3vθ − ω2sθ ω2ω3vθ + ω1sθ 1− vθ(ω2

1 + ω2
2)





=




ω2

1vθ + cθ ω1ω2vθ − ω3sθ ω1ω3vθ + ω2sθ
ω1ω2vθ + ω3sθ ω2

2vθ + cθ ω2ω3vθ − ω1sθ
ω1ω3vθ − ω2sθ ω2ω3vθ + ω1sθ ω2

3vθ + cθ



 .

(2.16)
Equating (2.15) with (2.16), we see that

trace(R) = r11 + r22 + r33 = 1 + 2 cos θ.

To verify that this equation has a solution, we recall that the trace of
R is equal to the sum of its eigenvalues. Since R preserves lengths and
det R = +1, its eigenvalues have magnitude 1 and occur in complex
conjugate pairs (see Exercise 3). It follows that −1 ≤ trace(R) ≤ 3 and
hence we can set

θ = cos−1

(
trace(R)− 1

2

)
. (2.17)

Note that there is an ambiguity in the value of θ, in the sense that θ±2πn
or −θ ± 2πn could be chosen as well.

Now, equating the off-diagonal terms of R and exp(ω̂θ), we get

r32 − r23 = 2ω1sθ

r13 − r31 = 2ω2sθ

r21 − r12 = 2ω3sθ.

If θ 6= 0, we choose

ω =
1

2sθ




r32 − r23
r13 − r31
r21 − r12



 . (2.18)

Note that if 2π− θ had been chosen earlier in equation (2.17), the axis of
rotation would have been −ω. Indeed, the exponential map is a many-
to-one map from R3 onto SO(3). If R = I, then trace(R) = 3 and hence
θ = 0 and ω can be chosen arbitrarily. If R 6= I, the above construction
shows that there are two distinct ω and θ ∈ [0, 2π) such that R = exp(ω̂θ).

The components of the vector ωθ ∈ R3 given by equations (2.17)
and (2.18) are called the exponential coordinates for R. Considering ω ∈
R3 to be an axis of rotation with unit magnitude and θ ∈ R to be an angle,
Propositions 2.4 and 2.5 combine to give the following classic theorem.

30

Theorem 2.6 (Euler). Any orientation R ∈ SO(3) is equivalent to a
rotation about a fixed axis ω ∈ R3 through an angle θ ∈ [0, 2π).

This method of representing a rotation is also known as the equivalent
axis representation. We note from the preceding proof that this repre-
sentation is not unique since choosing ω′ = −ω and θ′ = 2π − θ gives
the same rotation as ω and θ. Furthermore, if we insist that ω have unit
magnitude, then ω is arbitrary for R = I (by choosing θ = 0). The former
problem is a consequence of the exponential map being many-to-one and
the latter is referred to as a singularity of the equivalent axis represen-
tation, alluding to the fact that one may lose smooth dependence of the
equivalent axis as a function of the orientation R at R = I.

2.3 Other representations

The exponential coordinates are called the canonical coordinates of the
rotation group. Other coordinates for the rotation group also exist and
are briefly described below and in the exercises. We emphasize the con-
nection of these other representations with the exponential coordinates
presented above; more classical treatments of these representations can
be found in standard kinematics texts.

Euler angles

One method of describing the orientation of a coordinate frame B relative
to another coordinate frame A is as follows: start with frame B coincident
with frame A. First, rotate the B frame about the z-axis of frame B (at
this time coincident with frame A) by an angle α, then rotate about the
(new) y-axis of frame B by an angle β, and then rotate about the (once
again, new) z-axis of frame B by an angle γ. This yields a net orientation
Rab(α, β, γ) and the triple of angles (α, β, γ) is used to represent the
rotation.

The angles (α, β, γ) are called the ZYZ Euler angles. Since all ro-
tations are performed about the principal axes of the moving frame, we
define the following elementary rotations about the x-, y-, and z-axes:

Rx(φ) := ebxφ =




1 0 0
0 cosφ − sinφ
0 sinφ cosφ



 ,

Ry(β) := ebyβ =




cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ



 ,

and

Rz(α) := ebzα =




cosα − sinα 0
sinα cosα 0

0 0 1



 .

31

To derive the final orientation of frame B, it is easiest to derive the
formula by viewing the rotation with B considered as the fixed frame,
since then all rotations then occur around fixed axes. The appropriate
sequence of rotations for the frame A, considering the B frame as fixed,
is

Rba = Rz(−γ)Ry(−β)Rz(−α).

Inverting this expression gives the rotation matrix of B relative to A:

Rab = Rz(α)Ry(β)Rz(γ)

=




cαcβcγ − sαsγ −cαcβsγ − sαcγ cαsβ
sαcβcγ + cαsγ −sαcβsγ + cαcγ sαsβ
−sβcγ sβsγ cβ



 .
(2.19)

Here cα, sα are abbreviations for cosα and sinα, respectively, and simi-
larly for the other terms.

It is clear that any matrix of the form in equation (2.19) is an orthog-
onal matrix (since it is a composition of elementary rotations). As in the
case of the exponential map, the converse question of whether the map
from (α, β, γ) → SO(3) is surjective is an important one. The answer
to this question is affirmative: given a rotation R ∈ SO(3), the Euler
angles can be computed by solving equation (2.19) for α, β, and γ. For
example, when sinβ 6= 0, the solutions are

β = atan2(
√
r231 + r232, r33)

α = atan2(r23/sβ , r13/sβ)

γ = atan2(r32/sβ ,−r31/sβ),
(2.20)

where atan2(y, x) computes tan−1(y/x) but uses the sign of both x and
y to determine the quadrant in which the resulting angle lies.

ZYZ Euler angles are an example of a local parameterization of SO(3).
As in the case of the equivalent axis representation, singularities in the
parameterization (referring to the lack of existence of global, smooth
solutions to the inverse problem of determining the Euler angles from the
rotation) occur at R = I, the identity rotation. In particular, we note
that (α, β, γ) of the form (α, 0,−α) yields Rab(α, 0,−α) = I. Thus, there
are infinitely many representations of the identity rotation in the ZYZ
Euler angles parameterization.

Other types of Euler angle parameterizations may be devised by using
different ordered sets of rotation axes. Common choices include ZYX axes
(Fick angles) and YZX axes (Helmholtz angles). The ZYX Euler angles
are also referred to as the yaw, pitch, and roll angles, with Rab defined by
rotating about the x-axis in the body frame (roll), then the y-axis in the
body frame (pitch), and finally the z-axis in the body frame (yaw). Both
the ZYX and YZX Euler angle parameterizations have the advantage of

32

not having a singularity at the identity orientation, R = I, though they
do contain singularities at other, different, orientations. For example, in
the instance of ZYX Euler angles, we have:

Rab = Rz(ψ)Ry(θ)Rx(φ) = ebzψebyθebxφ,

which is singular when θ = −π/2. It is a fundamental topological fact
that singularities can never be eliminated in any 3-dimensional represen-
tation of SO(3). This situation is similar to that of attempting to find a
global coordinate chart on a sphere, which also fails.

Quaternions

Quaternions generalize complex numbers and can be used to represent
rotations in much the same way as complex numbers on the unit circle can
be used to represent planar rotations. Unlike Euler angles, quaternions
give a global parameterization of SO(3), at the cost of using four numbers
instead of three to represent a rotation.

Formally, a quaternion is a vector quantity of the form

Q = q0 + q1i + q2j + q3k qi ∈ R, i = 0, . . . , 3,

where q0 is the scalar component of Q and ~q = (q1, q2, q3) is the vector
component. A convenient shorthand notation is Q = (q0, ~q) with q0 ∈ R,
~q ∈ R3. The set of quaternions Q is a 4-dimensional vector space over
the reals and forms a group with respect to quaternion multiplication,
denoted “·”. Multiplication is distributive and associative, but not com-
mutative; it satisfies the relations

ai = ia aj = ja ak = ka a ∈ R

i · i = j · j = k · k = i · j · k = −1

i · j = −j · i = k j · k = −k · j = i k · i = −i · k = j

The conjugate of a quaternion Q = (q0, ~q) is given by Q∗ = (q0,−~q) and
the magnitude of a quaternion satisfies

‖Q‖2 = Q ·Q∗ = q20 + q21 + q22 + q23 .

It is straightforward to verify that the inverse of a quaternion is Q−1 =
Q∗/‖Q‖2 and that Q = (1, 0) is the identity element for quaternion mul-
tiplication.

The product between two quaternions has a simple form in terms of
the inner and cross products between vectors in R3. Let Q = (q0, ~q) and
P = (p0, ~p) be quaternions, where q0, p0 ∈ R are the scalar parts of Q
and P and ~q, ~p are the vector parts. It can be shown algebraically that
the product of two quaternions satisfies:

Q · P = (q0p0 − ~q · ~p, q0~p+ p0~q + ~q × ~p).

33

In most applications, this formula eliminates the need to make direct use
of the multiplicative relations given above.

The unit quaternions are the subset of all Q ∈ Q such that ‖Q‖ =
1. The unit quaternions also form a group with respect to quaternion
multiplication (Exercise 6). Given a rotation matrix R = exp(ω̂θ), we
define the associated unit quaternion as

Q =
(
cos(θ/2), ω sin(θ/2)

)
,

where ω ∈ R3 represents the unit axis of rotation and θ ∈ R represents
the angle of rotation. A detailed calculation shows that if Qab represents
a rotation between frame A and frame B, and Qbc represents a rotation
between frames B and C, then the rotation between A and C is given by
the quaternion

Qac = Qab ·Qbc.
Thus, the group operation on unit quaternions directly corresponds to
the group operation for rotations. Given a unit quaternion Q = (q0, ~q),
we can extract the corresponding rotation by setting

θ = 2 cos−1 q0 ω =

{
~q

sin(θ/2) if θ 6= 0,

0 otherwise,

and R = exp(ω̂θ).
Since the group structure for quaternions directly corresponds to that

of rotations, quaternions provide an efficient representation for rotations
which do not suffer from singularities. Their properties are explored more
fully in the exercises.

3 Rigid Motion in RRRR3

Recall from Section 1 that a rigid motion is one that preserves the dis-
tance between points and the angle between vectors. We represent rigid
motions by using rigid body transformations to describe the instanta-
neous position and orientation of a body coordinate frame relative to
an inertial frame. This representation relies on the fact that rigid body
transformations map right-handed, orthonormal frames to right-handed,
orthonormal frames, thus preserving distance and angles. In this book
we refer to all transformations between coordinate frames as rigid body
transformations (or just rigid transformations), whether or not a rigid
body is explicitly present.

In general, rigid motions consist of rotation and translation. In the
preceding section, we discussed representations of pure rotational motion.
The procedure for representing pure translational motion is very simple:
choose a (any) point in the body and keep track of the coordinates of the

34

gab

z

A

x

y

pab
x

B
y

z
q

Figure 2.3: Coordinate frames for specifying rigid motions.

point relative to some known frame. This gives a curve p(t) ∈ R3, t ∈
[0, T], for a trajectory of the entire rigid body.

The representation of general rigid body motion, involving both trans-
lation and rotation, is more involved. We describe the position and ori-
entation of a coordinate frame B attached to the body relative to an
inertial frame A (see Figure 2.3). Let pab ∈ R3 be the position vector
of the origin of frame B from the origin of frame A, and Rab ∈ SO(3)
the orientation of frame B, relative to frame A. A configuration of the
system consists of the pair (pab, Rab), and the configuration space of the
system is the product space of R3 with SO(3), which shall be denoted as
SE(3) (for special Euclidean group):

SE(3) = {(p,R) : p ∈ R3, R ∈ SO(3)} = R3 × SO(3). (2.21)

We defer the proof of the fact that SE(3) is a group to the next subsection.
As in the case of SO(3), there is a generalization to n dimensions,

SE(n) := Rn × SO(n).

Analogous to the rotational case, an element (p,R) ∈ SE(3) serves as
both a specification of the configuration of a rigid body and a transforma-
tion taking the coordinates of a point from one frame to another. More
precisely, let qa, qb ∈ R3 be the coordinates of a point q relative to frames
A and B, respectively. Given qb, we can find qa by a transformation of
coordinates:

qa = pab +Rabqb (2.22)

where gab = (pab, Rab) ∈ SE(3) is the specification of the configuration of
the B frame relative to the A frame. By an abuse of notation, we write
g(q) to denote the action of a rigid transformation on a point,

g(q) = p+Rq,

35

so that qa = gab(qb).
The action of a rigid transformation g = (p,R) on a vector v = s− r

is defined by the following formula:

g∗(v) := g(s)− g(r) = R(s− r) = Rv.

Thus, a vector is transformed by rotation.

3.1 Homogeneous representation

The transformation of points and vectors by rigid transformations has a
simple representation in terms of matrices and vectors in R4. We begin
by adopting some notation. We append 1 to the coordinates of a point
to yield a vector in R4,

q̄ =

[q1
q2
q3
1

]
.

These are called the homogeneous coordinates of the point q. Thus, the
origin has the form

Ō =

[
0
0
0
1

]
.

Vectors, which are the difference of points, then have the form

v̄ =

[
v1
v2
v3
0

]
.

Note that the form of the vector is different from that of a point. The
0 and 1 in the fourth component of vectors and points, respectively, will
remind us of the difference between points and vectors and enforce a few
rules of syntax:

1. Sums and differences of vectors are vectors.

2. The sum of a vector and a point is a point.

3. The difference between two points is a vector.

4. The sum of two points is meaningless.

The transformation qa = gab(qb) given in equation (2.22) is an affine
transformation. Using the preceding notation for points, we may repre-
sent it in linear form by writing it as

q̄a =

[
qa
1

]
=

[
Rab pab
0 1

] [
qb
1

]
=: ḡabq̄b.

The 4 × 4 matrix ḡab is called the homogeneous representation of gab ∈
SE(3). In general, if g = (p,R) ∈ SE(3), then

ḡ =

[
R p
0 1

]
. (2.23)

36

The price to be paid for the convenience of having a homogeneous or linear
representation of the rigid body motion is the increase in the dimension
of the quantities involved from 3 to 4.

The last row of the matrix of equation (2.23) appears to be “extra
baggage” as well. However, in the graphics literature, the number 1 is
frequently replaced by a scalar constant which is either greater than 1
to represent dilation or less than 1 to represent contraction. Also, the
row vector of zeros in the last row may be replaced by some other row
vector to provide “perspective transformations.” In both these instances,
of course, the transformation represented by the augmented matrix no
longer corresponds to a rigid displacement.

Rigid body transformations can be composed to form new rigid body
transformations. Let gbc ∈ SE(3) be the configuration of a frame C
relative to a frame B, and gab the configuration of frame B relative to
another frame A. Then, using equation (2.23), the configuration of C
relative to frame A is given by

ḡac = ḡab ḡbc =

[
RabRbc Rabpbc + pab

0 1

]
. (2.24)

Equation (2.24) defines the composition rule for rigid body transforma-
tions to be the standard matrix multiplication. Using the homogeneous
representation, it may be verified that the set of rigid transformations is
a group; that is:

1. If g1, g2 ∈ SE(3), then g1g2 ∈ SE(3).

2. The 4× 4 identity element, I, is in SE(3).

3. If g ∈ SE(3), then the inverse of ḡ is determined by straightforward
matrix inversion to be:

ḡ−1 =

[
RT −RT p
0 1

]
∈ SE(3)

so that g−1 = (−RT p,RT).

4. The composition rule for rigid body transformations is associative.

Using the homogeneous representation for a vector v = s−r, we obtain
the representation for a rigid body transformation of v by multiplying the
homogeneous representations of v by the homogeneous representation of
g,

ḡ∗v̄ = ḡ(s̄)− ḡ(r̄) =

[
R p
0 1

] [
v1
v2
v3
0

]
.

Note that by defining the homogeneous representation of a vector to have
a zero in the bottom row, we are able to once again use matrix multi-
plication to represent the action of a rigid transformation, this time on

37

y

x

z

l1

A B

θ

Figure 2.4: Rigid body motion generated by rotation about a fixed axis.

a vector instead of a point. For notational simplicity, in what follows
we will confuse homogeneous representations and the abstract represen-
tation of points, vectors, and rigid body transformations. Thus, we will
write gq and gv instead of ḡq̄ and ḡ∗v̄.

The next proposition establishes that elements of SE(3) are indeed
rigid body transformations; namely, that they preserve angles between
vectors and distances between points.

Proposition 2.7. Elements of SE(3) represent rigid motions
Any g ∈ SE(3) is a rigid body transformation:

1. g preserves distance between points:

‖gq − gp‖ = ‖q − p‖ for all points q, p ∈ R3.

2. g preserves orientation between vectors:

g∗(v × w) = g∗v × g∗w for all vectors v, w ∈ R3.

Proof. The proofs follow directly from the corresponding proofs for rota-
tion matrices:

‖gq1 − gq2‖ = ‖Rq1 −Rq2‖ = ‖q1 − q2‖
g∗v × g∗w = Rv ×Rw = R(v × w).

Example 2.1. Rotation about a line
Consider the motion of a rigid body rotated about a line in the z direction,
through the point (0, l1, 0) ∈ R3, as shown in Figure 2.4. If we let θ denote

38

the amount of rotation, then the orientation of coordinate frame B with
respect to A is

Rab =




cos θ − sin θ 0
sin θ cos θ 0

0 0 1



 .

The coordinates for the origin of frame B are

pab =




0
l1
0



 ,

again relative to frame A. The homogeneous representation of the con-
figuration of the rigid body is given by

gab(θ) =





cos θ − sin θ 0 0
sin θ cos θ 0 l1

0 0 1 0
0 0 0 1



 .

Note that when the angle θ = 0, gab(0) gives that the relative displace-
ment between the two frames is a pure translation along the y-axis.

3.2 Exponential coordinates for rigid motion and twists

The notion of the exponential mapping introduced in Section 2 for SO(3)
can be generalized to the Euclidean group, SE(3). We will make extensive
use of this representation in the sequel since it allows an elegant, rigorous,
and geometric treatment of spatial rigid body motion. We begin by
presenting a pair of motivational examples and then present a formal set
of definitions.

Consider the simple example of a one-link robot as shown in Fig-
ure 2.5a, where the axis of rotation is ω ∈ R3, ‖ω‖ = 1, and q ∈ R3 is
a point on the axis. Assuming that the link rotates with unit velocity,
then the velocity of the tip point, p(t), is

ṗ(t) = ω × (p(t)− q). (2.25)

This equation can be conveniently converted into homogeneous coordi-
nates by defining the 4× 4 matrix ξ̂ to be

ξ̂ =

[
ω̂ v
0 0

]
, (2.26)

with v = −ω × q. Equation (2.25) can then be rewritten with an extra
row appended to it as

[
ṗ
0

]
=

[
ω̂ −ω × q
0 0

] [
p
1

]
= ξ̂

[
p
1

]
=⇒ ˙̄p = ξ̂p̄.

39

(b)

ω

p(t)

pq

v

p(t)

p

(a)

Figure 2.5: (a) A revolute joint and (b) a prismatic joint.

The solution of the differential equation is given by

p̄(t) = e
bξtp̄(0),

where e
bξt is the matrix exponential of the 4 × 4 matrix ξ̂t, defined (as

usual) by

e
bξt = I + ξ̂t+

(ξ̂t)2

2!
+

(ξ̂t)3

3!
+ · · ·

The scalar t is the total amount of rotation (since we are rotating with

unit velocity). exp(ξ̂t) is a mapping from the initial location of a point
to its location after rotating t radians.

In a similar manner, we can represent the transformation due to trans-
lational motion as the exponential of a 4 × 4 matrix. The velocity of a
point attached to a prismatic joint moving with unit velocity (see Fig-
ure 2.5b) is

ṗ(t) = v. (2.27)

Again, the solution of equation (2.27) can be written as exp(ξ̂t)p̄(0),
where t is the total amount of translation and

ξ̂ =

[
0 v
0 0

]
. (2.28)

The 4 × 4 matrix ξ̂ given in equations (2.26) and (2.28) is the gen-
eralization of the skew-symmetric matrix ω̂ ∈ so(3). Analogous to the
definition of so(3), we define

se(3) := {(v, ω̂) : v ∈ R3, ω̂ ∈ so(3)}. (2.29)

In homogeneous coordinates, we write an element ξ̂ ∈ se(3) as

ξ̂ =

[
ω̂ v
0 0

]
∈ R4×4.

40

An element of se(3) is referred to as a twist, or a (infinitesimal) generator
of the Euclidean group. We define the ∨ (vee) operator to extract the
6-dimensional vector which parameterizes a twist,

[
ω̂ v
0 0

]∨
=

[
v
ω

]
, (2.30)

and call ξ := (v, w) the twist coordinates of ξ̂. The inverse operator, ∧
(wedge), forms a matrix in se(3) out of a given vector in R6:

[
v
ω

]∧
=

[
ω̂ v
0 0

]
. (2.31)

Thus, ξ ∈ R6 represents the twist coordinates for the twist ξ̂ ∈ se(3); this
parallels our notation for skew-symmetric matrices.

Proposition 2.8. Exponential map from se(3) to SE(3)

Given ξ̂ ∈ se(3) and θ ∈ R, the exponential of ξ̂θ is an element of SE(3),
i.e.,

e
bξθ ∈ SE(3).

Proof. The proof is by explicit calculation. In the course of the proof, we
will obtain a formula for exp(ξ̂θ). Write ξ̂ as

ξ̂ =

[
ω̂ v
0 0

]
.

Case 1 (ω = 0). If ω = 0, then a straightforward calculation shows that

ξ̂2 = ξ̂3 = ξ̂4 = · · · = 0

so that exp(ξ̂θ) = I + ξ̂θ and hence

e
bξθ =

[
I vθ
0 1

]
ω = 0 (2.32)

which is in SE(3) as desired.

Case 2 (ω 6= 0). Assume ‖ω‖ = 1, by appropriate scaling of θ if necessary,
and define a rigid transformation g by

g =

[
I ω × v
0 1

]
. (2.33)

Now, using the calculation of Lemma 2.3, with ‖ω‖ = 1, we have

ξ̂′ = g−1ξ̂g

=

[
I −ω × v
0 1

] [
ω̂ v
0 0

] [
I ω × v
0 1

]

=

[
ω̂ ωωT v
0 0

]
=

[
ω̂ hω
0 0

]
,

(2.34)

41

where h := ωT v. Using the following identity (see Exercise 8),

e
bξθ = eg(

bξ′θ)g−1

= ge
bξ′θg−1, (2.35)

it suffices to calculate exp(ξ̂′θ). This simplifies the calculation since it
may be verified (using ω̂ω = ω × ω = 0) that

(ξ̂′)2 =

[
ω̂2 0
0 0

]
, (ξ̂′)3 =

[
ω̂3 0
0 0

]
, · · ·

Hence,

e
bξ′θ =

[
ebωθ hωθ
0 1

]
,

and using equation (2.35) it follows that

e
bξθ =

[
ebωθ (I − ebωθ)(ω × v) + ωωT vθ
0 1

]
ω 6= 0 (2.36)

which is an element of SE(3).

The transformation g = exp(ξ̂θ) is slightly different than the rigid
transformations that we have encountered previously. We interpret it
not as mapping points from one coordinate frame to another, but rather
as mapping points from their initial coordinates, p(0) ∈ R3, to their
coordinates after the rigid motion is applied:

p(θ) = e
bξθp(0).

In this equation, both p(0) and p(θ) are specified with respect to a single
reference frame. Similarly, if we let gab(0) represent the initial configu-
ration of a rigid body relative to a frame A, then the final configuration,
still with respect to A, is given by

gab(θ) = e
bξθgab(0). (2.37)

Thus, the exponential map for a twist gives the relative motion of a rigid
body. This interpretation of the exponential of a twist as a mapping from
initial to final configurations will be especially important as we study the
kinematics of robot mechanisms in the next chapter.

Our primary interest is to use the exponential map as a representation
for rigid motion, and hence we must show that every rigid transformation
can be written as the exponential of some twist. The following proposition
asserts that this is always possible and gives a constructive procedure for
finding the twist which generates a given rigid transformation.

Proposition 2.9. Surjectivity of the exponential map onto SE(3)

Given g ∈ SE(3), there exists ξ̂ ∈ se(3) and θ ∈ R such that g = exp(ξ̂θ).

42

Proof. (Constructive). Let g = (R, p) with R ∈ SO(3), p ∈ R3. We
ignore the trivial case (R, p) = (I, 0) which is solved with θ = 0 and

arbitrary ξ̂.

Case 1 (R = I). If there is no rotational motion, set

ξ̂ =

[
0 p

‖p‖
0 0

]
θ = ‖p‖.

Equation (2.32) verifies that exp(ξ̂θ) = (I, p) = g.

Case 2 (R 6= I). To find ξ = (v, ω), we equate exp(ξ̂θ) and g and solve
for v, ω. Using equation (2.36):

e
bξθ =

[
ebωθ (I − ebωθ)(ω × v) + ωωT vθ
0 1

]
.

ω and θ are obtained by solving the rotation equation exp(ω̂θ) = R, as
in Proposition 2.5 of the previous section. This leaves the equation

(I − ebωθ)(ω × v) + ωωT vθ = p, (2.38)

which must be solved for v. It suffices to show that the matrix

A = (I − ebωθ)ω̂ + ωωT θ

is nonsingular for all θ ∈ (0, 2π). This follows from the fact that the two
matrices which comprise A have mutually orthogonal null spaces when
θ 6= 0 (and R 6= I). Hence, Av = 0 ⇐⇒ v = 0. See Exercise 9 for more
details.

In light of Proposition 2.9, every rigid transformation g can be written
as the exponential of some twist ξ̂θ ∈ se(3). We call the vector ξθ ∈ R6

the exponential coordinates for the rigid transformation g. Note that, as
in the case of rotations, the mapping exp : se(3)→ SE(3) is many-to-one
since the choice of ω and θ for solving the rotational component of the
motion is not unique. This does not present great difficulties since for
most applications we are given the twist as part of the problem and we
wish to find the corresponding rigid motion.

Example 2.2. Twist coordinates for rotation about a line
Consider the rigid displacement generated by rotating about a fixed axis
in space, as shown in Figure 2.6. The configuration of the B frame is
given by

gab =





cosα − sinα 0 −l2 sinα
sinα cosα 0 l1 + l2 cosα

0 0 1 0
0 0 0 1



 .

43

l2

y

x

z

l1

A
α

B

Figure 2.6: Rigid body displacement generated by rotation about a fixed
axis.

We wish to calculate the twist coordinates corresponding to the configu-
ration of the frame B relative to frame A.

To compute the twist which generates gab, we follow the proof of
Proposition 2.9, assuming α 6= 0 (so that R 6= I). The axis ω ∈ R3 and
angle θ ∈ R which satisfy exp(ω̂θ) = Rab are

ω =




0
0
1



 θ = α,

since we are rotating about the z-axis. To find v, we must solve
[(
I − ecωθ

)
ω̂ + ωωT θ

]
v = pab.

Using the fact that θ = α and expanding the left-hand side, this equation
becomes




sinα cosα− 1 0

1− cosα sinα 0
0 0 α



 v =




−l2 sinα

l1 + l2 cosα
0



 .

The solution is given by

v =

2
4

sin α
2(1−cos α)

1
2

0

− 1
2

sin α
2(1−cos α)

0

0 0 1
α

3
5

2
4

−l2 sin α

l1 + l2 cos α

0

3
5 =

2
64

l1−l2
2

(l1+l2) sin α

2(1−cos α)

0

3
75 .

Thus, the twist coordinates for gab are

ξ =





l1−l2
2

(l1+l2) sin α

2(1−cos α)

0
0
0
1



 θ = α 6= 0.

44

d

p ω

θ

q

p

v

p+ θv

θ

(a) general screw (b) pure translation

Figure 2.7: Screw motions.

This solution may be unexpected, considering that the motion was
generated by a pure rotation about an axis. The reason for the compli-
cated form of the solution is that we took the exponential coordinates
of the absolute transformation between the B and A coordinate frames.
Consider, instead, the exponential coordinates for the relative transfor-
mation

g(α) = gab(α)g−1
ab (0),

where gab(0) is the transformation corresponding to α = 0 (a pure trans-
lation). It can be verified that the exponential coordinates for the relative
transformation g(α) are

ξ =




l1
0
0
0
0
1



 θ = α 6= 0.

3.3 Screws: a geometric description of twists

In this section, we explore some of the geometric attributes associated
with a twist ξ = (v, ω). These attributes give additional insight into the
use of twists to parameterize rigid body motions. We begin by defining a
specific class of rigid body motions, called screw motions, and then show
that a twist is naturally associated with a screw.

Consider a rigid body motion which consists of rotation about an
axis in space through an angle of θ radians, followed by translation along
the same axis by an amount d as shown in Figure 2.7a. We call such a
motion a screw motion, since it is reminiscent of the motion of a screw, in
so far as a screw rotates and translates about the same axis. To further
encourage this analogy, we define the pitch of the screw to be the ratio
of translation to rotation, h := d/θ (assuming θ 6= 0). Thus, the net
translational motion after rotating by θ radians is hθ. We represent the

45

p− q

ωp

θ

q
q + ebωθ(p− q)

q + ebωθ(p− q) + hθω

Figure 2.8: Generalized screw motion (with nonzero rotation).

axis as a directed line through a point; choosing q ∈ R3 to be a point on
the axis and ω ∈ R3 to be a unit vector specifying the direction, the axis
is the set of points

l = {q + λω : λ ∈ R}. (2.39)

The above definitions hold when the screw motion consists of a nonzero
rotation followed by translation.

In the case of zero rotation, the axis of the screw must be defined dif-
ferently: we take the axis as the line through the origin in the direction
v (i.e., v is a vector of magnitude 1), as shown in Figure 2.7b. By con-
vention, the pitch of this screw is ∞ and the magnitude is the amount of
translation along the direction v. Collecting these, we have the following
definition of a screw:

Definition 2.2. Screw motion
A screw S consists of an axis l, a pitch h, and a magnitude M . A screw
motion represents rotation by an amount θ = M about the axis l followed
by translation by an amount hθ parallel to the axis l. If h =∞ then the
corresponding screw motion consists of a pure translation along the axis
of the screw by a distance M .

To compute the rigid body transformation associated with a screw,
we analyze the motion of a point p ∈ R3, as shown in Figure 2.8. The
final location of the point is given by

gp = q + ebωθ(p− q) + hθω

or, in homogeneous coordinates,

g

[
p
1

]
=

[
ebωθ (I − ebωθ)q + hθω
0 1

] [
p
1

]
.

46

Since this relationship must hold for all p ∈ R3, the rigid motion given
by the screw is

g =

[
ebωθ (I − ebωθ)q + hθω
0 1

]
. (2.40)

As in the last section, this transformation maps points attached to the
rigid body from their initial coordinates (θ = 0) to their final coordinates,
and all points are specified with respect to the fixed reference frame.

Note that the rigid body displacement given in equation (2.40) has
the same form as the exponential of a twist, given in equation (2.36):

e
bξθ =

[
ebωθ (I − ebωθ)(ω × v) + ωωT vθ
0 1

]
.

In fact, if we choose v = −ω × q + hω, then ξ = (v, ω) generates the
screw motion in equation (2.40) (assuming ‖ω‖ = 1, θ 6= 0). In the case
of a pure rotation, h = 0 and the twist associated with a screw motion
is simply ξ = (−ω × q, ω). In the instance that the screw corresponds
to pure translation, we let θ be the amount of translation, and the rigid
body motion described by this “screw” is

g =

[
I θv
0 1

]
, (2.41)

which is precisely the motion generated by exp(ξ̂θ) with ξ = (v, 0). Thus,
we see that a screw motion corresponds to motion along a constant twist
by an amount equal to the magnitude of the screw.

In fact, we can go one step further and define a screw associated
with every twist. Let ξ̂ ∈ se(3) be a twist with twist coordinates ξ =
(v, ω) ∈ R6. We do not assume that ‖ω‖ = 1, allowing both translation
plus rotation as well as pure translation. The following are the screw
coordinates of a twist:

1. Pitch:

h =
ωT v

‖ω‖2 . (2.42)

The pitch of a twist is the ratio of translational motion to rotational
motion. If ω = 0, we say that ξ has infinite pitch.

2. Axis:

l =

{
{ ω×v‖ω‖2 + λω : λ ∈ R}, if ω 6= 0

{0 + λv : λ ∈ R}, if ω = 0.
(2.43)

The axis l is a directed line through a point. For ω 6= 0, the axis is
a line in the ω direction going through the point ω×v

‖ω‖2 . For ω = 0,

the axis is a line in the v direction going through the origin.

47

3. Magnitude:

M =

{
‖ω‖, if ω 6= 0

‖v‖, if ω = 0.
(2.44)

The magnitude of a screw is the net rotation if the motion contains
a rotational component, or the net translation otherwise. If we
choose ‖ω‖ = 1 (or ‖v‖ = 1 when ω = 0), then a twist ξ̂θ has
magnitude M = θ.

We next show that given a screw, we can define a twist which realizes
the screw motion and has the proper geometric attributes. It suffices to
prove that we can define a twist with a given set of attributes, since any
twist with those attributes will generate the correct screw motion.

Proposition 2.10. Screw motions correspond to twists
Given a screw with axis l, pitch h, and magnitude M , there exists a unit
magnitude twist ξ such that the rigid motion associated with the screw is
generated by the twist Mξ.

Proof. The proof is by construction. We split the proof into the usual
cases: pure translation and translation plus rotation. For consistency, we
generate a screw of the form ξ̂θ, where θ = M . We will assume that q is
a point on the axis of the screw.

Case 1 (h =∞). Let l = {q + λv : ‖v‖ = 1, λ ∈ R}, θ = M , and define

ξ̂ =

[
0 v
0 0

]
.

The rigid body motion exp(ξ̂θ) corresponds to pure translation along the
screw axis by an amount θ.

Case 2 (h finite). Let l = {q + λω : ‖ω‖ = 1, λ ∈ R}, θ = M , and define

ξ̂ =

[
ω̂ −ω × q + hω
0 0

]
.

The fact that the rigid body motion exp(ξ̂θ) is the appropriate screw
motion is verified by direct calculation.

There are several important special cases of screw motion of which we
shall make frequent use. A zero pitch screw is a screw motion for which
h = 0, corresponding to a pure rotation about an axis. Zero pitch screws
are used to model the action of a revolute joint of a manipulator. The axis
of the screw corresponds to the axis of rotation of the joint. An infinite
pitch screw is a motion for which h =∞, as previously mentioned. This
case corresponds to a pure translation and is the model for the action of
a prismatic joint. The axis of the screw is defined to be a line through

48

the origin which points in the direction of translation (a line through any
other point could also be used). The magnitude of the screw gives the
amount of the displacement. Finally, we define a unit twist to be a twist
such that either ‖ω‖ = 1, or ω = 0 and ‖v‖ = 1; that is, a unit twist has
magnitude M = 1. Unit twists are useful since they allow us to express
rigid motions due to revolute and prismatic joints as g = exp(ξ̂θ), where
θ corresponds to the amount of rotation or translation.

Some comments about the point q on the axis of the screw in the
formulas above are in order. For instance, it is important to note that
the formulas do not change for different choices of points on the axis of
the screw. Thus, if q′ = q + λω is some other point on the axis of the
screw, the formula in equation (2.40) would be unchanged. It is also
instructive to verify that for points on the axis of the screw, the screw
motion is purely translational of magnitude hθ, as may be verified by
applying equation (2.40) to points on the axis.

The geometric meaning of a screw is expressed succinctly in the follow-
ing theorem. Its proof follows directly from the definition of the attributes
of a twist.

Theorem 2.11 (Chasles). Every rigid body motion can be realized by a
rotation about an axis combined with a translation parallel to that axis.

As mentioned previously, it is important to keep in mind that the
exponential of a twist represents the relative motion of a rigid body. As a
mapping, exp(ξ̂θ) takes points from their initial coordinates, p(0) ∈ R3,
to their coordinates after the rigid motion is applied:

p(θ) = e
bξθp(0).

Both p(0) and p(θ) are specified with respect to a single reference frame.
If a coordinate frame B is attached to a rigid body undergoing a screw
motion, the instantaneous configuration of the coordinate frame B, rela-
tive to a fixed frame A, is given by

gab(θ) = e
bξθgab(0). (2.45)

This transformation can be interpreted as follows: multiplication by
gab(0) maps the coordinates of a point relative to the B frame into A’s
coordinates, and the exponential map transforms the point to its final
location (still in A coordinates).

Example 2.3. Rotation about a line
Consider the motion of a rigid body rotating about a fixed axis in space,
as shown in Figure 2.9. This motion corresponds to a zero-pitch screw
about an axis in the ω = (0, 0, 1) direction passing through the point

49

z

x

l1

A
y

θ

ω

q
B

Figure 2.9: Rigid body motion generated by rotation about a fixed axis.

q = (0, l1, 0). The corresponding twist is

ξ =

[
−ω × q
ω

]
=




l1
0
0
0
0
1



 .

The exponential of this twist is given by

e
bξθ =

[
ebωθ (I − ebωθ)(ω × v)
0 1

]
=





cos θ − sin θ 0 l1 sin θ
sin θ cos θ 0 l1(1− cos θ)

0 0 1 0
0 0 0 1



 .

When applied to the homogeneous representation of a point, this matrix
maps the coordinates of a point on the rigid body, specified relative to the
frame A with θ = 0, to the coordinates of the same point after rotating
by θ radians about the axis.

The rigid transformation which maps points in B coordinates to A
coordinates—and hence describes the configuration of the rigid body—is
given by gab(θ) = exp(ξ̂θ)gab(0) where

gab(0) =

[
I
[

0
l1
0

]

0 1

]
.

Taking the exponential and performing the matrix multiplication yields

gab =





cos θ − sin θ 0 0
sin θ cos θ 0 l1

0 0 1 0
0 0 0 1



 ,

which can be verified by inspection.

50

4 Velocity of a Rigid Body

In this section, we derive a formula for the velocity of a rigid body whose
motion is given by g(t), a curve parameterized by time t in SE(3). This
is not such a naive question as in the case of a single particle following
a curve q(t) ∈ R3, where the velocity of the particle is vq(t) = d

dtq(t),
because this notion of velocity cannot be generalized since SE(3) is not
Euclidean. In particular, the quantity ġ(t) /∈ SE(3) and ġ(t) /∈ se(3) and
the question of its connection with rotational and translational velocity
needs to be handled with care. Further, the definition of velocity needs to
relate to our informal understanding of rotational and translational ve-
locity. We will show that the proper representation of rigid body velocity
is through the use of twists.

4.1 Rotational velocity

Consider first the case of pure rotational motion in R3. Let Rab(t) ∈
SO(3) be a curve representing a trajectory of an object frame B, with
origin at the origin of frame A, but rotating relative to the fixed frame
A. We call A the spatial coordinate frame and B the body coordinate
frame.1 Any point q attached to the rigid body follows a path in spatial
coordinates given by

qa(t) = Rab(t)qb.

Note that the coordinates qb are fixed in the body frame. The velocity of
the point in spatial coordinates is

vqa
(t) =

d

dt
qa(t) = Ṙab(t)qb. (2.46)

Thus Ṙab maps the body coordinates of a point to the spatial velocity
of that point. This representation of the rotational velocity is somewhat
inefficient, since it requires nine numbers to describe the velocity of a
rotating body. One may use the special structure in the matrix Ṙab to
derive a more compact representation. To this end, we rewrite equa-
tion (2.46) as

vqa
(t) = Ṙab(t)R

−1
ab (t)Rab(t)qb. (2.47)

The following lemma shows that Ṙab(t)R
−1
ab (t) ∈ so(3); i.e., it is skew-

symmetric.

Lemma 2.12. Given R(t) ∈ SO(3), the matrices Ṙ(t)R−1(t) ∈ R3×3

and R−1(t)Ṙ(t) ∈ R3×3 are skew-symmetric.

1The word “spatial” is sometimes used to differentiate between planar motions in
R

2 and general (spatial) motions in R
3. In this chapter we reserve the word spatial to

mean “relative to a fixed (inertial) coordinate frame.”

51

Proof. Differentiating the identity

R(t)R(t)T = I

we have, dropping the dependence of the matrices on t,

ṘRT +RṘT = 0,

so that
ṘRT = −(ṘRT)T .

Hence, ṘR−1 = ṘRT is a skew-symmetric matrix. The proof that R−1Ṙ
is skew-symmetric follows by differentiating the identity RTR = I.

Lemma 2.12 allows us to represent the velocity of a rotating body
using a 3-vector. We define the instantaneous spatial angular velocity,
denoted ωsab ∈ R3, as

ω̂sab := ṘabR
−1
ab . (2.48)

The vector ωsab corresponds to the instantaneous angular velocity of the
object as seen from the spatial (A) coordinate frame. Similarly, we define
the instantaneous body angular velocity, denoted ωbab ∈ R3, as

ω̂bab := R−1
ab Ṙab. (2.49)

The body angular velocity describes the angular velocity as viewed from
the instantaneous body (B) coordinate frame. From these two equations,
it follows that the relationship between the two angular velocities is

ω̂bab = R−1
ab ω̂

s
abRab or ωbab = R−1

ab ω
s
ab. (2.50)

Thus the body angular velocity can be determined from the spatial angu-
lar velocity by rotating the angular velocity vector into the instantaneous
body frame.

Returning now to equation (2.47), we can express the velocity of a
point in terms of the instantaneous angular velocity of the rigid body.
Substituting equation (2.48) into equation (2.47),

vqa
(t) = ω̂sabRab(t)qb = ωsab(t)× qa(t). (2.51)

Alternatively, using equation (2.50), the velocity of the point in body
frame is given by

vqb
(t) := RTab(t)vqa

(t) = ωbab(t)× qb. (2.52)

Equations (2.51) and (2.52) constitute a compact description of the ve-
locity of all particles of the body in terms of the body and spatial angular
velocities, ωbab and ωsab.

52

θ(t)

Figure 2.10: Rotational motion of a one degree of freedom manipulator.

Example 2.4. Rotational motion of a one degree of freedom
manipulator
Consider the motion of the one degree of freedom manipulator shown
in Figure 2.10. Let θ(t) be the angle of rotation about some reference
configuration. The trajectory of the manipulator is given by

R(t) =




cos θ(t) − sin θ(t) 0
sin θ(t) cos θ(t) 0

0 0 1



 .

The spatial velocity is

bωs = ṘR
T =

2
4
−θ̇ sin θ −θ̇ cos θ 0

θ̇ cos θ −θ̇ sin θ 0
0 0 0

3
5

2
4

cos θ sin θ 0
− sin θ cos θ 0

0 0 1

3
5 =

2
4

0 −θ̇ 0

θ̇ 0 0
0 0 0

3
5 ,

hence,

ωs =




0
0

θ̇



 .

The body velocity is

ω̂b = RT Ṙ =




0 −θ̇ 0

θ̇ 0 0
0 0 0



 or ωb =




0
0

θ̇



 .

4.2 Rigid body velocity

Let us now consider the general case where gab(t) ∈ SE(3) is a one-
parameter curve (parameterized by time) representing a trajectory of
a rigid body: more specifically, the rigid body motion of the frame B

53

attached to the body, relative to a fixed or inertial frame A. As in the
case of rotation, ġab(t) by itself is not particularly useful, but the two
terms ġabg

−1
ab and g−1

ab ġab have some special significance. With

gab(t) =

[
Rab(t) pab(t)

0 1

]
,

we have that

ġabg
−1
ab =

[
Ṙab ṗab
0 0

] [
RTab −RTabpab
0 1

]
=

[
ṘabR

T
ab −ṘabRTabpab + ṗab

0 0

]
,

which has the form of a twist. By analogy to the rotational velocity, we
define the spatial velocity V̂ sab ∈ se(3) as

V̂ sab = ġabg
−1
ab V sab =

[
vsab
ωsab

]
=

[
−ṘabRTabpab + ṗab

(ṘabR
T
ab)

∨

]
. (2.53)

The spatial velocity V̂ sab can be used to find the velocity of a point in
spatial coordinates. The coordinates of a point q attached to the rigid
body in spatial coordinates are given by

qa(t) = gab(t)qb.

Differentiating yields

vqa
= q̇a = ġabqb = ġabg

−1
ab qa

and thus,

vqa
= V̂ sabqa = ωsab × qa + vsab. (2.54)

The interpretation of the components of the spatial velocity of a rigid
motion is somewhat unintuitive. The angular component, ωsab, is the in-
stantaneous angular velocity of the body as viewed in the spatial frame.
The linear component, vsab, is not the velocity of the origin of the body
frame, which is apparent from equation (2.53). Rather, vsab(t) is the ve-
locity of a (possibly imaginary) point on the rigid body which is traveling
through the origin of the spatial frame at time t. That is, if one stands at
the origin of the spatial frame and measures the instantaneous velocity
of a point attached to the rigid body and traveling through the origin at
that instant, this is vsab(t).

A somewhat more natural interpretation of the spatial velocity is ob-
tained by using the relationship between twists and screws described in
the previous section. The screw associated with the twist V̂ sab gives the
instantaneous axis, pitch, and magnitude of the rigid motion relative to
the spatial frame.

54

It is also possible to specify the velocity of a rigid body with respect
to the (instantaneous) body frame. We define

V̂ bab = g−1
ab ġab =

[
RTabṘab RTabṗab

0 0

]
V bab =

[
vbab

ωbab

]
=

[
RTabṗab

(RTabṘab)
∨

]

(2.55)

to be the body velocity of a rigid motion gab(t) ∈ SE(3). The velocity of
the point in the body frame is given by

vqb
= g−1

ab vqa
= g−1

ab ġabqb = V̂ bab(t)qb.

Thus, the action of V̂ bab is to take the body coordinates of a point, qb, and
return the velocity of that point written in body coordinates, vqb

:

vqb
= V̂ babqb = ωbab × qb + vbab. (2.56)

The interpretation of the body velocity is straightforward: vbab is the
velocity of the origin of the body coordinate frame relative to the spatial
frame, as viewed in the current body frame. ωbab is the angular velocity
of the coordinate frame, also as viewed in the current body frame. Note
that the body velocity is not the velocity of the body relative to the body
frame; this latter quantity is always zero.

The spatial and body velocity of a rigid motion are related by a sim-
ilarity transformation. To calculate this relationship, we note that

V̂ sab = ġabg
−1
ab = gab(g

−1
ab ġab)g

−1
ab = gab V̂

b
ab g

−1
ab .

Alternatively, we can write

ωsab = Rabω
b
ab

vsab = −ωsab × pab + ṗab = pab × (Rabω
b
ab) +Rabv

b
ab.

In either case, we may summarize the calculation as

V sab =

[
vsab
ωsab

]
=

[
Rab p̂abRab
0 Rab

] [
vbab

ωbab

]
. (2.57)

The 6 × 6 matrix which transforms twists from one coordinate frame to
another is referred to as the adjoint transformation associated with g,
written Adg. Thus, given g ∈ SE(3) which maps one coordinate system
into another, Adg : R6 → R6 is given as

Adg =

[
R p̂R
0 R

]
(2.58)

55

In the calculation that we have just performed, Adg maps body velocity
twist coordinates to spatial velocity twist coordinates. Adg is invertible,
and its inverse is given by

Ad−1
g =

[
RT −(RT p)∧RT

0 RT

]
=

[
RT −RT p̂
0 RT

]
= Adg−1

(see Exercise 14).
We shall make frequent use of the adjoint transformations throughout

the book. The calculations performed above give the following useful
characterization of the adjoint associated with a rigid transformation g ∈
SE(3):

Lemma 2.13. If ξ̂ ∈ se(3) is a twist with twist coordinates ξ ∈ R6, then

for any g ∈ SE(3), gξ̂g−1 is a twist with twist coordinates Adg ξ ∈ R6.

It will often be convenient to define velocity without explicit reference
to coordinate frames. For a rigid body with configuration g ∈ SE(3), we
define the spatial velocity as

V̂ s = ġg−1 V s =

[
vs

ωs

]
=

[
−ṘRT p+ ṗ

(ṘRT)∨

]
(2.59)

and the body velocity as

V̂ b = g−1ġ V b =

[
vb

ωb

]
=

[
RT ṗ

(RT Ṙ)∨

]
. (2.60)

The body and spatial velocities are related by the adjoint transformation,

V s = Adg V
b. (2.61)

Example 2.5. One degree of freedom manipulator
Consider the one degree of freedom manipulator shown in Figure 2.11.
The configuration of the coordinate frame B relative to the fixed frame
A is given by

g(t) =





cos θ(t) − sin θ(t) 0 −l2 sin θ(t)
sin θ(t) cos θ(t) 0 l1 + l2 cos θ(t)

0 0 1 l0
0 0 0 1



 ,

where we drop all subscripts for simplicity. The spatial velocity of the
rotating rigid body is given by

V s =

[
vs

ωs

]
vs = −ṘRT p+ ṗ

ωs = (ṘRT)∨.

56

A

l1 l2

θ

B

l0

Figure 2.11: Rigid body motion generated by rotation about a fixed axis.

Using the calculation of ωs from the previous example, we have

vs =




l1θ̇
0
0



 ωs =




0
0

θ̇



 .

Note that vs is precisely the velocity of a point attached to the rigid body
as it travels through the origin of the A coordinate frame.

The body velocity is

V b =

[
vb

ωb

]
vb = RT ṗ

ωb = (RT Ṙ)∨,

which gives

vb =




−l2θ̇

0
0



 ωb =




0
0

θ̇



 .

The body velocity can be interpreted by imagining the velocity of the
origin of the B coordinate frame, as seen in the B coordinates. Thus, the
linear velocity is always in the −x direction and the angular velocity is
always in the z direction. The magnitude of the linear component of the
velocity is dependent on the length of the link connecting the B frame to
the joint.

4.3 Velocity of a screw motion

In the previous example, we calculated the spatial velocity of a rigid mo-
tion generated by a screw action, exp(ξ̂θ). Referring back to Example 2.3

57

in the previous section, we see that the spatial velocity V s in the example
above is identical to ξ when θ̇ = 1. Consider the more general case where

gab(θ) = e
bξθgab(0)

represents the configuration of coordinate frame B relative to frame A.
Using the fact that for a constant twist ξ̂,

d

dt

(
e

bξθ
)

= ξ̂θ̇e
bξθ

(see Exercise 8), the spatial velocity for this rigid body motion is

V̂ sab = ġab(θ)g
−1
ab (θ)

=
(
ξ̂θ̇e

bξθgab(0)
)(

g−1
ab (0)e−

bξθ
)

= ξ̂θ̇.

Thus, the spatial velocity corresponding to this motion is precisely the
velocity generated by the screw.

The body velocity of a screw motion can be calculated in a similar
manner:

V̂ bab = g−1
ab (θ)ġab(θ)

=
(
g−1
ab (0)e−

bξθ
)(

ξ̂θ̇e
bξθgab(0)

)

=
(
g−1
ab (0)ξ̂gab(0)

)
θ̇ =

(
Adg−1

ab
(0) ξ

)∧
θ̇.

For θ̇ = 1, V̂ bab is a constant vector in the moving body frame. The di-
rection of the body velocity twist is given by the adjoint transformation
generated by the initial configuration of the rigid body, g−1

ab (0). In par-
ticular, if gab(0) = I, i.e., the body frame and spatial frame coincide at
θ = 0, then V sab = V bab = ξθ̇, where ξ is the constant twist which generates
the screw motion.

4.4 Coordinate transformations

Just as we can compose rigid body transformations to find gac ∈ SE(3)
given gab, gbc ∈ SE(3), it is possible to determine the velocity of one
coordinate frame relative to a third given the relative velocities between
the first and second and second and third coordinate frames. We state
the main results as a set of propositions.

Proposition 2.14. Transformation of spatial velocities
Consider the motion of three coordinate frames, A, B, and C. The fol-
lowing relation exists between their spatial velocities:

V sac = V sab + Adgab
V sbc.

58

Proof. The configuration of frame C relative to A is given by

gac = gabgbc.

By definition and the chain rule,

V̂ sac = ġacg
−1
ac

= (ġabgbc + gabġbc)(g
−1
bc g

−1
ab)

= ġabg
−1
ab + gab(ġbcg

−1
bc)g−1

ab

= V̂ sab + gabV̂
s
bcg

−1
ab ,

and converting to twist coordinates,

V sac = V sab + Adgab
V sbc.

Proposition 2.15. Transformation of body velocities
Consider motion of three coordinate frames, A, B, and C. The following
relation exists between their relative body velocities:

V bac = Adg−1
bc
V bab + V bbc.

Proof. Application of the chain rule, as above.

Propositions 2.14 and 2.15 are used to transform the velocity of a rigid
body between different coordinate frames. Often, two of the coordinate
frames are stationary with respect to each other and the velocity rela-
tionships can be simplified. As an example, if A and B are two inertial
frames which are fixed relative to each other, then the spatial velocity of
a frame C satisfies

V sac = Adgab
V sbc. (2.62)

The corresponding relationship for body velocities is

V bac = V bbc, (2.63)

since the body velocity is independent of the inertial frame with respect
to which it is measured.

The transformation rules given by Propositions 2.14 and 2.15 can also
be applied to constant twists, such as those used to model revolute and
prismatic joints. If ξ is a twist which represents the motion of a screw
and we move the screw by applying a rigid body motion g ∈ SE(3), the
new twist can be obtained using equation (2.62). We interpret g as a
fixed rigid motion and equate ξ with a spatial velocity vector. In this
case, ġ = 0 and hence

ξ′ = Adg ξ or ξ̂′ = gξ̂g−1. (2.64)

59

B

A

l0
l1

C

θ2

θ1

Figure 2.12: Two degree of freedom manipulator.

This formula is of tremendous importance in the chapters to come, where
we will need to keep track of the different twist axes corresponding to the
joints of a robot when they are moved.

Example 2.6. Velocity of a two-link mechanism
Consider the two degree of freedom manipulator shown in Figure 2.12.
We wish to find the velocity of frame C relative to A, given the joint
velocities θ̇1, θ̇2 ∈ R. Since each motion is a screw motion, we write

V sab =

[
vab
ωab

]
θ̇1 vab =




0
0
0



 ωab =




0
0
1



 ,

V sbc =

[
vbc
ωbc

]
θ̇2 vbc =




l1
0
0



 ωbc =




0
0
1



 .

We also calculate Adgab
:

Adgab
=

[
Rab

(
0
0
l0

)∧
Rab

0 Rab

]
.

Using Proposition 2.14,

V sac = V sab + Adgab
V sbc =




0
0
0
0
0
1



 θ̇1 +




l1 cos θ1
l1 sin θ1

0
0
0
1



 θ̇2.

Note that the velocity consists of two components, one from each of the
joints, and that they add together linearly.

60

A few other identities between body and spatial velocities will prove
useful in subsequent chapters. We give them here in the form of a lemma.
Their proof is left as an exercise.

Lemma 2.16. Rigid body velocity identities
Using the notation given above for the velocity of one coordinate frame
relative to another, the following relationships hold:

V bab = −V sba
V bab = −Adgba

V bba.

5 Wrenches and Reciprocal Screws

In this section we consider forces and moments acting on rigid bodies and
use this to introduce the notion of screw systems and reciprocal screws.

5.1 Wrenches

A generalized force acting on a rigid body consists of a linear component
(pure force) and an angular component (pure moment) acting at a point.
We can represent this generalized force as a vector in R6:

F =

[
f
τ

]
f ∈ R3 linear component

τ ∈ R3 rotational component

We will refer to a force/moment pair as a wrench.
The values of the wrench vector F ∈ R6 depend on the coordinate

frame in which the force and moment are represented. If B is a coordinate
frame attached to a rigid body, then we write Fb = (fb, τb) for a wrench
applied at the origin of B, with fb and τb specified with respect to the B
coordinate frame.

Wrenches combine naturally with twists to define instantaneous work.
Consider the motion of a rigid body parameterized by gab(t), where A
is an inertial frame and B is a frame attached to the rigid body. Let
V bab ∈ R6 represent the instantaneous body velocity of the rigid body
and let Fb represent an applied wrench. Both of these quantities are
represented relative to the B coordinate frame and their dot product is
the infinitesimal work:

δW = V bab · Fb = (v · f + ω · τ).

The net work generated by applying the wrench Fb through a twist V bab
over a time interval [t1, t2] is given by

W =

∫ t2

t1

V bab · Fb dt.

61

F

x

B
z y

A

C

x

z

y

Figure 2.13: Transformation of wrenches between coordinate frames.

Two wrenches are said to be equivalent if they generate the same work
for every possible rigid body motion. Equivalent wrenches can be used to
rewrite a given wrench in terms of a wrench applied at a different point
(and with respect to a different coordinate frame). An example of this is
shown in Figure 2.13: given the wrench Fb applied at the origin of contact
coordinate frame B, we wish to determine the equivalent wrench applied
at the origin of the object coordinate frame C. In order to compute
the equivalent wrench, we use the instantaneous work performed by the
wrench as the body undergoes an arbitrary rigid motion. Let gbc =
(pbc, Rbc) be the configuration of frame C relative to B. By equating the
instantaneous work done by the wrench Fb and the wrench Fc over an
arbitrary interval of time, we have that

V bac · Fc = V bab · Fb =
(
Adgbc

V bac
)T
Fb = V bac ·AdTgbc

Fb,

and since V bac is free,
Fc = AdTgbc

Fb. (2.65)

Equation (2.65) transforms a wrench applied at the origin of the B frame
into an equivalent wrench applied at the origin of the C frame. The com-
ponents of Fc are specified relative to the C coordinate frame. Expanding
equation (2.65),

[
fc
τc

]
=

[
RTbc 0

−RTbcp̂bc RTbc

] [
fb
τb

]
, (2.66)

we see that the adjoint transformation rotates the force and torque vectors
from the B frame into the C frame and includes an additional torque of
the form −pbc × fb, which is the torque generated by applying a force fb
at a distance −pbc.

It is also possible to represent a wrench with respect to a coordinate
frame which is not inside the rigid body. Consider for example the co-

62

ordinate frame A shown in Figure 2.13. The wrench F written in A’s
coordinate frame is given by

Fa = AdTgba
Fb.

This wrench represents the equivalent force/moment pair applied as if
the coordinate frame A were rigidly attached to the object. This is not
the same as simply rewriting the components of Fb in A’s coordinates,
since the point of application for Fa is the origin of the A frame and not
the origin of the B frame.

If several wrenches are all applied to a single rigid body, then the net
wrench acting on the rigid body can be constructed by adding the wrench
vectors. In order for this addition to make sense, all of the wrenches
must be represented with respect to the same frame. Thus, given a
set of wrenches Fi, each wrench is first written as an equivalent wrench
relative to a single coordinate frame and then the equivalent wrenches
are added to determine the net wrench acting on the rigid body. This
helps explain why equivalent wrenches include a shift of origin: one can
only add wrenches if they represent forces and torques applied at a single
point (such as the center of mass or a fixed spatial frame).

A net wrench F acting on a rigid body with configuration gab ∈
SE(3) has two natural representations. The body representation of the
wrench is written as Fb and represents the equivalent force and moment
applied at the origin of the B frame (and written in B’s coordinates). The
spatial representation of the wrench is the equivalent wrench written in
A’s coordinate frame. These representations are analogous to the spatial
and body representations of the velocity of a rigid body.

As with velocities, it will be convenient to define the spatial and body
representations of a wrench without explicit reference to a given set of
coordinate frames. If g ∈ SE(3) is the configuration of a rigid body, then
we write F b for the body wrench and F s for the spatial wrench. These
wrenches are related by the transpose of the adjoint matrix:

F b = AdTg F
s. (2.67)

This notation mirrors that used for body and spatial velocities of a rigid
body allowing the instantaneous work performed by a wrench F moving
through a rigid motion with instantaneous velocity V to be written as

δW = V b · F b = V s · F s.

We leave the proof of this statement as an exercise.

Example 2.7. Preview of multifingered grasping
Consider the multifingered grasp shown in Figure 2.14. Let Fci

be the
wrench exerted by the ith finger on the grasped object, represented in

63

O

PS1 S2

C1 C2

Figure 2.14: Coordinate frames for a simple grasping example.

the frame Ci. The net wrench on the body, in the body coordinate frame
O, is given by

Fo =
∑

AdT
g−1

oci

Fci
.

This is the basic calculation which is used in grasping to determine the
net effect of forces applied at the contact points between the fingers and
the object.

5.2 Screw coordinates for a wrench

As with twists, it is possible to generate a wrench by applying a force
along an axis in space and simultaneously applying a torque about the
same axis. The dual of Chasles’ theorem, which showed that every twist
could be generated by a screw, is called Poinsot’s theorem. It asserts that
every wrench is equivalent to a force and torque applied along the same
axis. We begin by defining the notion of a wrench acting along a screw.

With respect to some fixed spatial coordinate frame A, let S be a screw
with axis l = {q+ λω : λ ∈ R}, ‖ω‖ = 1, pitch h, and magnitude M . We
construct a wrench from this screw by applying a force of magnitude M
along the directed line l and a torque of magnitude hM about the line.
If h =∞, we generate a wrench by applying a pure torque about l. The
resulting wrench, in A’s coordinates, is given by

F = M

[
ω

−ω × q + hω

]
h finite

F = M

[
0
ω

]
h =∞,

(2.68)

64

where the term −ω × q accounts for the offset between the axis of the
screw and the origin of A. We call F the wrench along the screw S. Note
that F (and q and ω) are all specified with respect to the fixed coordinate
frame A and hence F represents the spatial wrench applied to the rigid
body. (We omit the use of subscripts in this section since all quantities
are specified with respect to a single coordinate frame.)

To find the screw coordinates for a wrench, we solve equation (2.68)
for ω, q, h, and M given F = (f, τ). This leads to the following theorem:

Theorem 2.17 (Poinsot). Every collection of wrenches applied to a rigid
body is equivalent to a force applied along a fixed axis plus a torque about
the same axis.

Proof. The proof is constructive. Let F = (f, τ) be the net wrench
applied to the object. We ignore the trivial case, F = 0.

Case 1: (f = 0, pure torque). Set M = ‖τ‖, ω = τ/M , and h = ∞.
Equation (2.68) verifies that these are the appropriate screw coordinates.

Case 2: (f 6= 0). Set M = ‖f‖, and ω = f/M . It remains to solve

M(q × ω + hω) = τ

for q and h. One solution is given by

h =
fT τ

‖f‖2 q =
f × τ
‖f‖2 .

This solution is not unique since any q′ = q + λω will also satisfy equa-
tion (2.68).

Using Poinsot’s theorem, we can define the screw coordinates of a
wrench, F = (f, τ):

1. Pitch:

h =
fT τ

‖f‖2 (2.69)

The pitch of a wrench is the ratio of angular torque to linear force.
If f = 0, we say that F has infinite pitch.

2. Axis:

l =

{
{ f×τ‖f‖2 + λf : λ ∈ R}, if f 6= 0

{0 + λτ : λ ∈ R}, if f = 0
(2.70)

The axis l is a directed line through a point. For f 6= 0, the axis
is a line in the f direction going through the point q = f×τ

‖f‖2 . For

f = 0, the axis is a line in the τ direction going through the origin.

65

3. Magnitude:

M =

{
‖f‖, if f 6= 0

‖τ‖, if f = 0
(2.71)

The magnitude of a screw is the net linear force, if the motion
contains a linear component, or the net torque, otherwise.

The dual nature of twists and wrenches is evident in the screw coordinates
for twists and wrenches. For example, a zero pitch twist corresponds to
pure rotation, while a zero pitch wrench corresponds to a pure force (no
angular component).

5.3 Reciprocal screws

The dot product between twists and wrenches gives the instantaneous
power associated with moving a rigid body through an applied force. As
in the previous subsection, we carry out all calculations relative to a single
coordinate frame and omit the use of subscripts. A wrench F is said to
be reciprocal to a twist V if the instantaneous power is zero: F · V = 0.
Since both twists and wrenches can be represented by screws, we can use
this to define the notion of reciprocal screws:

Definition 2.3. Reciprocal screws
Two screws S1 and S2 are reciprocal if the twist V about S1 and the
wrench F along S2 are reciprocal.

Classically, reciprocal screws are defined by using the reciprocal prod-
uct between screws. Let Si be a screw with axis li = {qi + λωi : λ ∈ R},
pitch hi, and magnitude Mi. Given two screws S1 and S2, we define the
distance d between the screws as the minimum distance between l1 and
l2; this distance will be achieved along a line perpendicular to both l1
and l2. We denote this line as dn where n is a unit vector and d > 0.
The angle α between S1 and S2 is the angle between the vectors ω1 and
ω2,

α = atan2(ω1 × ω2 · n, ω1 · ω2)

(see Figure 2.15). The reciprocal product between two screws is defined
as

S1 ⊙ S2 = M1M2

(
(h1 + h2) cosα− d sinα

)
. (2.72)

Proposition 2.18. Characterization of reciprocal screws
Two screws S1 and S2 are reciprocal if and only if

S1 ⊙ S2 = 0.

Proof. We consider only the case where h1 and h2 are finite. The other
cases are left as exercises. Let V be the twist about the screw S1 and F

66

ω2

S1

q1
d

q2

S2

ω1

α

Figure 2.15: Notation for reciprocal screws.

be the wrench along the screw S2:

V = M1

[
q1 × ω1 + h1ω1

ω1

]
F = M2

[
ω2

q2 × ω2 + h2ω2

]
.

Without loss of generality we can assume that q1 and q2 are the points
at which the axes are closest and hence q2 can be rewritten as q2 =
q1 + dn where n is the unit normal vector connecting the two axes. The
instantaneous work between V and F is

V · F = M1M2

(
ω2 · (q1 × ω1 + h1ω1) + ω1 · (q2 × ω2 + h2ω2)

)

= M1M2

(
ω2 · q1×ω1 + h1ω1 · ω2 + ω1 · (q1 + dn)×ω2 + h2ω1 · ω2

)

= M1M2

(
(h1 + h2) cosα− d sinα

)
,

which is precisely the reciprocal product. Hence, by definition, the screws
are reciprocal if and only if the reciprocal product is zero.

If we represent screws using twist coordinates, then we can define
the reciprocal product directly in terms of the components of the twists.
Let V1, V2 ∈ R6 be two arbitrary twists. Then we define the reciprocal
product between V1 and V2 as

V1 ⊙ V2 = vT1 ω2 + vT2 ω1.

A similar relationship holds if we associate screws with wrenches.
Reciprocal screws play an important role in analyzing the kinematic

properties of mechanisms. For example, in a grasping context we can
view the wrenches applied to an object as a set of constraining screws
and ask if there are any instantaneous rigid motions (twists) that do not
violate the constraints. Such twists, if they exist, correspond to motions

67

F1

F2

F3

Figure 2.16: A set of pure forces acting on a rigid body.

of the grasped object which cannot be restricted by the fingers. This
specific situation is considered in detail in Chapter 5, but we can give
some preliminary indications of how the analysis might proceed using
the concept of a system of screws.

As a motivating example, consider the grasping situation depicted in
Figure 2.16. Suppose we constrain the motion of a rigid body by ap-
plying normal forces at several points around the rigid body. We would
like to ascertain if there are any motions of the rigid body which cannot
be resisted by these forces. Let {S1, . . . , Sk} represent the screws corre-
sponding to the wrenches. Suppose that there exists another screw Sf
such that Sf ⊙ Si = 0. Then, interpreting Sf as a twist and each Si as
a wrench, we see that motion along Sf causes no work to be performed
against any of the wrenches. Hence, the wrenches cannot resist this type
of motion and the object is free to move (instantaneously) along Sf .

If we interpret a set of screws {S1, . . . , Sk} as twists, then the twists
form a linear space over the reals and hence we can talk about scaling
and adding screws by interpreting this in terms of regular addition and
multiplication on twists. We call the set of screws {S1, . . . , Sk} a system
of screws and we define addition and scaling of screws by associating each
screw with a unique twist.

It follows immediately from the definition of the reciprocal product
that if S is reciprocal to S1 and S2, then it is reciprocal to any linear
combination of S1 and S2 (with the linear combination performed in twist
coordinates). Using this linearity property, we can define the set of all
screws which are reciprocal to a given system of screws as the recipro-

68

cal screw system. A reciprocal screw system defines a linear subspace of
twists. If we interpret a screw system as a set of wrenches (or constrained
directions), then the reciprocal screw system describes the instantaneous
motions which are possible under the constraints. Conversely, if we inter-
pret the screw system as a set of twists, then the reciprocal screw system
is the set of wrenches which cause no net motion of the object. Both of
these interpretations follow directly from the definition of the reciprocal
product between a twist and a wrench.

In addition to applications in grasping, screw systems and reciprocal
screw systems can be also used to analyze the mobility of mechanisms,
as we shall see in detail in the next chapter. The following proposition is
one of the main tools in this type of analysis. Its proof follows directly
from the fact that the space of twists is a 6-dimensional linear space and
that screws can be naturally associated with this linear space.

Proposition 2.19. Dimensionality of reciprocal screw systems
Let r be the dimension of system of screws {S1, . . . , Sk} (determined by
converting the screws into either twists or wrenches) and let n be the
dimension of the corresponding reciprocal system. Then,

r + n = 6.

Applying this proposition to the example in Figure 2.16, we see that
the subspace of twists which cannot be resisted is at least 3-dimensional.
It may have greater dimension if the applied normal forces do not generate
independent wrenches.

69

6 Summary

The following are the key concepts covered in this chapter:

1. The configuration of a rigid body is represented as an element g ∈
SE(3). An element g ∈ SE(3) may also be viewed as a mapping
g : R3 → R3 which preserves distances and angles between points.
In homogeneous coordinates, we write

g =

[
R p
0 1

]
R ∈ SO(3)

p ∈ R3.

The same representation can also be used for a rigid body transfor-
mation between two coordinate frames.

2. Rigid body transformations can be represented as the exponentials
of twists:

g = exp(ξ̂θ) ξ̂ =

[
ω̂ v
0 0

]
,

ω̂ ∈ so(3),

v ∈ R3, θ ∈ R.

The twist coordinates of ξ̂ are ξ = (v, ω) ∈ R6.

3. A twist ξ = (v, ω) is associated with a screw motion having at-
tributes

pitch: h =
ωT v

‖ω‖2 ;

axis: l =

{
{ ω×v‖ω‖2 + λω : λ ∈ R}, if ω 6= 0

{0 + λv : λ ∈ R}, if ω = 0;

magnitude: M =

{
‖ω‖, if ω 6= 0

‖v‖, if ω = 0.

Conversely, given a screw we can write the associated twist. Two
special cases are pure rotation about an axis l = {q + λω} by an
amount θ and pure translation along an axis l = {0 + λv}:

ξ =

[
−ω × q
ω

]
θ (pure rotation) ξ =

[
v
0

]
θ (pure translation).

4. The velocity of a rigid motion g(t) ∈ SE(3) can be specified in two
ways. The spatial velocity,

V̂ s = ġg−1,

70

is a twist which gives the velocity of the rigid body as measured by
an observer at the origin of the reference frame. The body velocity,

V̂ b = g−1ġ,

is the velocity of the object in the instantaneous body frame. These
velocities are related by the adjoint transformation

V s = Adg V
b Adg =

[
R p̂R
0 R

]
,

which maps R6 → R6. To transform velocities between coordinate
frames, we use the relations

V sac = V sab + Adgab
V sbc

V bac = Adg−1
bc
V bab + V bbc,

where V sab is the spatial velocity of coordinate frame B relative to
frame A and V bab is the body velocity.

5. Wrenches are represented as a force, moment pair

F = (f, τ) ∈ R6.

If B is a coordinate frame attached to a rigid body, then we write
Fb = (fb, τb) for a wrench applied at the origin of B, with fb and τb
specified with respect to the B coordinate frame. If C is a second
coordinate frame, then we can write Fb as an equivalent wrench
applied at C:

Fc = AdTgbc
Fb.

For a rigid body with configuration gab, F
s := Fa is called the

spatial wrench and F b := Fb is called the body wrench.

6. A wrench F = (f, τ) is associated with a screw having attributes

pitch: h =
fT τ

‖f‖2 ;

axis: l =

{
{ f×τ‖f‖2 + λf : λ ∈ R}, if f 6= 0

{0 + λτ : λ ∈ R}, if f = 0;

magnitude: M =

{
‖f‖, if f 6= 0

‖τ‖, if f = 0.

7. A wrench F and a twist V are reciprocal if F · V = 0. Two screws
S1 and S2 are reciprocal if the twist V1 about S1 and the wrench F2

71

along S2 are reciprocal. The reciprocal product between two screws
is given by

S1 ⊙ S2 = V1 · F2 = V1 ⊙ V2 = v1 · ω2 + vT2 ω1

where Vi = (vi, ωi) represents the twist associated with the screw
Si. Two screws are reciprocal if the reciprocal product between the
screws is zero.

8. A system of screws {S1, . . . , Sk} describes the vector space of all
linear combinations of the screws {S1, . . . , Sk}. A reciprocal screw
system is the set of all screws which are reciprocal to Si. The
dimensions of a screw system and its reciprocal system sum to 6
(in SE(3)).

All of the concepts presented in this chapter can also be applied to planar
rigid body motions (see Exercises 10 and 11).

7 Bibliography

The treatment of rigid motion described here, particularly the geometry
of twists, was inspired by the work of Paden [85]. The use of exponential
coordinates for representing robotic motion was introduced by Brock-
ett [12]. Brockett’s derivation also forms the basis of the next chapter.
Related treatments can be found in the classical work by Ball [6] and the
more recent texts by Hunt [42], Bottema and Roth [10], Duffy [28], Ange-
les [1], and McCarthy [70]. A more abstract version of the developments
of this chapter can be made in the framework of matrix Lie groups and
is presented in Appendix A.

72

8 Exercises

1. Let a, b, c ∈ R3 be 3-vectors and let · and × denote the dot product
and cross product in R3. Verify the following identities:

(a) a · (b× c) = (a× b) · c
(b) a× (b× c) = (a · c)b− (a · b)c

2. Using the homogeneous representation, show that SE(3) satisfies
the axioms of a group, with the group multiplication given by the
usual matrix multiplication.

3. Properties of rotation matrices
Let R ∈ SO(3) be a rotation matrix generated by rotating about a
unit vector ω by θ radians. That is, R satisfies R = exp(ω̂θ).

(a) Show that the eigenvalues of ω̂ are 0, i, and −i, where i =√
−1. What are the corresponding eigenvectors?

(b) Show that the eigenvalues of R are 1, eiθ, and e−iθ. What is
the eigenvector whose eigenvalue is 1?

(c) Let R =
[
r1 r2 r3

]
be a rotation matrix. Show that detR =

rT1 (r2 × r3).

4. Properties of skew-symmetric matrices
Show that the following properties of skew-symmetric matrices are
true:

(a) If R ∈ SO(3) and ω ∈ R3, then Rω̂RT = (Rω)∧.

(b) If R ∈ SO(3) and v, w ∈ R3, then R(v × w) = (Rv)× (Rw).

(c) Show that so(3) is a vector space. Determine its dimension
and give a basis for so(3).

5. Cayley parameters
Another parameterization of SO(3), which does not involve tran-
scendental functions, is Cayley’s parameterization. Let a be a vector
in R3 and let â be the associated 3× 3 skew-symmetric matrix.

(a) Show that Ra = (I − â)−1(I + â) ∈ SO(3).

(b) Verify that

Ra =
1

1+‖a‖2

2
4

1+a2
1−a2

2−a2
3 2(a1a2 − a3) 2(a1a3 + a2)

2(a1a2 + a3) 1−a2
1+a2

2 − a2
3 2(a2a3 − a1)

2(a1a3 − a2) 2(a2a3 + a1) 1−a2
1−a2

2+a2
3

3
5

(c) Given a rotation matrix R, compute the Cayley parameters a.

73

6. Unit quaternions
Let Q = (q0, ~q) and P = (p0, ~p) be quaternions, where q0, p0 ∈ R

are the scalar parts of Q and P and ~q, ~p are the vector parts.

(a) Show that the set of unit quaternions satisfies the axioms of a
group.

(b) Let x be a point and let X be a quaternion whose scalar part is
zero and whose vector part is equal to x (such a quaternion is
called a pure quaternion). Show that if Q is a unit quaternion,
the product QXQ∗ is a pure quaternion and the vector part
of QXQ∗ satisfies

(q20 − ~q · ~q)~x+ 2
(
q0(~q × ~x) + (x · ~q)~q

)
.

Verify that the vector part describes the point to which x is
rotated under the rotation associated with Q.

(c) Show that the set of unit quaternions is a two-to-one covering
of SO(3). That is, for each R ∈ SO(3), there exist two distinct
unit quaternions which can be used to represent this rotation.

(d) Compare the number of additions and multiplications needed
to perform the following operations:

i. Compose two rotation matrices.

ii. Compose two quaternions.

iii. Apply a rotation matrix to a vector.

iv. Apply a quaternion to a vector [as in part (b)].

Count a subtraction as an addition, and a division as a multi-
plication.

(e) Show that a rigid body rotating at unit velocity about a unit
vector in ω ∈ R3 can be represented by the quaternion differ-
ential equations

Q̇ ·Q∗ = (0, ω/2),

where · represents quaternion multiplication.

7. A rigid body moving in R2 has three degrees of freedom (two com-
ponents of translation and one of rotation), a rigid body moving in
R3 has six degrees of freedom (three each of translation and rota-
tion). Show that a rigid body moving in Rn will have 1

2 (n + n2)
degrees of freedom. How many are translational and how many are
rotational?

8. Properties of the matrix exponential
Let Λ be a matrix in Rn×n. The exponential of Λ is defined as

eΛ = I + Λ +
Λ2

2!
+

Λ3

3!
+ · · ·

74

(a) Choose a matrix norm and show that the above series con-
verges.

(b) Let g ∈ Rn×n be an invertible matrix. Show the following
equality:

geΛg−1 = egΛg
−1

.

(c) Verify that
d

dt
eΛθ = (Λθ̇)eΛθ = eΛθ(Λθ̇).

9. Projection maps and proof of Proposition 2.9
This problem completes the proof of Proposition 2.9 using the prop-
erties of projection maps on linear spaces. Assume ω ∈ so(3) and
‖ω‖ = 1.

(a) Given a vector ω ∈ R3, let Nω denote the subspace spanned
by ω and N⊥

ω denote the orthogonal complement. Show that

image ω̂ = N⊥
ω and kernel ω̂ = Nω.

(b) Let V ⊂ Rn be a linear subspace. A projection map is a linear
mapping PV : Rn → V which satisfies image (PV) = V and
PV (x) = x for all x ∈ V . Show that

PNω
= ωωT and PN⊥

ω
= (I − ωωT)

are both projection maps.

(c) Calculate the null space of I−ebωθ for ω ∈ so(3) and θ ∈ (0, 2π)
and show that (I − ebωθ) : N⊥

ω → N⊥
ω is bijective.

(d) Let A = (I − ebωθ)ω̂ + ωωT θ, where θ ∈ (0, 2π). Show that
A : R3 → R3 is invertible.

10. Planar rotational motion
Let SO(2) be the set of all 2× 2 orthogonal matrices with determi-
nant equal to +1.

(a) Show that SO(2) can be identified with the S1, the unit circle
in R2.

(b) Let ω ∈ R be a real number and define ω̂ ∈ so(2) as the
skew-symmetric matrix

ω̂ =

[
0 −ω
ω 0

]
.

Show that

ebωθ =

[
cosωθ − sinωθ
sinωθ cosωθ

]
.

Is the exponential map exp : so(2)→ SO(2) surjective? injec-
tive?

75

(c) Show that for R ∈ SO(2) and ω̂ ∈ so(2), Rω̂RT = ω̂.

11. Planar rigid body transformations
A transformation g = (p,R) ∈ SE(2) consists of a translation p ∈
R2 and a 2×2 rotation matrix R. We represent this in homogeneous
coordinates as a 3× 3 matrix:

g =

[
R p
0 1

]
.

A twist ξ̂ ∈ se(2) can be represented by a 3× 3 matrix of the form:

ξ̂ =

[
ω̂ v
0 0

]
ω̂ =

[
0 −ω
ω 0

]
ω ∈ R, v ∈ R2.

The twist coordinates for ξ̂ ∈ se(2) have the form ξ = (v, ω) ∈ R3.
Note that v is a vector in the plane and ω is a scalar.

(a) Show that the exponential of a twist in se(2) gives a rigid body
transformation in SE(2). Consider both the pure translation
case, ξ = (v, 0), and the general case, ξ = (v, ω), ω 6= 0.

(b) Show that the planar twists which correspond to pure rotation
about a point q and pure translation in a direction v are given
by

ξ =




qy
−qx
1



 (pure rotation) ξ =




vx
vy
0



 (pure translation).

(c) Show that every planar rigid body motion can be described
as either pure rotation about a point (called the pole of the
motion) or pure translation.

(d) Show that the matrices V̂ s = ġg−1 and V̂ b = g−1ġ are both
twists. Define and interpret the spatial velocity V s ∈ R3 and
the body velocity V b ∈ R3.

(e) The adjoint transformation is used to map body velocities
V b ∈ R3 into spatial velocities V s ∈ R3. Show that the adjoint
transformation for planar rigid motions is given by

Adg =

[
R

[py

−px

]

0 1

]
.

12. Verify that for ω ∈ R3, ‖ω‖ 6= 1

ebωθ = I +
ω̂

‖ω‖ sin(‖ω‖θ) +
ω̂2

‖ω2‖
(
1− cos(‖ω‖θ)

)
.

76

C0

C1

C2 C3

l1 l2

l0

Figure 2.17: A two degree of freedom manipulator.

13. Let ξa = (−ωa× qa + hωa, ωa) be the twist associated with a screw
having pitch h and axis l = {qa+λωa : λ ∈ R}, where all quantities
are specified relative to a coordinate frame A.

(a) Let B be a second coordinate frame with configuration gab ∈
SE(3). Show that the representation of the twist relative to B
is given by

ξb = Ad−1
gab

ξa = Adgba
ξa.

(b) Suppose instead that we move the screw via a rigid body trans-
formation g ∈ SE(3). Show that the transformed screw can be
represented by the twist

ξ′a = Adg ξa,

still relative to the A coordinate frame.

14. Use homogeneous representations to show that the following iden-
tities hold:

(a) (Adg)
−1 = Adg−1 for all g ∈ SE(3).

(b) Adg1g2 = Adg1 Adg2 for all g1, g2 ∈ SE(3).

15. Prove Proposition 2.15: V bac = Adg−1
bc
V bab + V bbc.

16. Figure 2.17 shows a two degree of freedom manipulator. Let l0, l1, l2
be the link length parameters and θ1, θ2 the joint angle variables of
link 1 and link 2, respectively.

(a) Express the position and orientation of frame C3 relative to
frame C0 in terms of the joint angle variables and the link
parameters.

77

(b) Compute the spatial velocity of C3 relative to C0 as functions
of the joint angles and the joint rates.

(c) Compute the body velocity of C3 relative to C0 as functions
of the joint angles and the joint rates.

(d) Optional: Find the spatial velocity of the origin of C3 and use
this to check your answer for parts (b) and (c).

You may want to use a symbolic math package, such as the one
described in Appendix B, to carry out the computations in this
exercise.

17. Frame invariance and reciprocal screw systems
An operator is said to be frame invariant if it does not depend on
the choice of coordinate frame used to carry out the calculations.
Operations which are frame invariant can be computed relative to
any coordinate frame, which can simplify calculations.

(a) Show that the reciprocal product between two screws is frame
invariant.

(b) Show that the inner product between two twists is not frame
invariant.

(c) Calculate a basis for the system of screws reciprocal to a zero-
pitch screw through a point q. Give a geometric interpretation
for the screws which form your basis. (Hint: perform your
calculations relative to a specially chosen frame.)

(d) Calculate a basis for the system of screws reciprocal to an
infinite pitch screw. Give a geometric interpretation for the
screws which form your basis.

(e) Using reciprocal screws, show that three parallel, coplanar,
zero-pitch screws are dependent. That is, exhibit a system of
four independent screws which are reciprocal to each of the
coplanar screws.

18. Hybrid representation of velocity
A seemingly natural way of representing the velocity of a rigid body
is to use ṗ to represent the linear velocity and ωs to represent the
angular velocity. We call V hab = (ṗ, ωs) the hybrid velocity of a rigid
body.

(a) Show that the hybrid velocity is related to the body velocity
by the relationship

V h =

[
R 0
0 R

]
V b

78

and hence represents the velocity of the rigid body relative to
a frame attached to the origin of the rigid body, but whose
orientation remains fixed relative to the inertial frame.

(b) Consider the motion of three coordinates frames, A, B, and
C. Show that the following relationship holds between their
hybrid velocities:

V hac = Ad(−Rabpbc) V
h
ab + AdRab

V hbc.

where Adp denotes the adjoint map corresponding to a pure
translation by p and AdR denotes the adjoint map correspond-
ing to pure rotation.

(c) Show that the hybrid velocity of a rigid body is independent
of the position of the spatial frame, but not its orientation.

(d) Show that the hybrid velocity of a rigid body is independent
of the orientation of the body frame, but not its position.

(e) Interpret a wrench in hybrid coordinates and calculate the
change of basis formulas for a change in spatial and/or body
frames.

79

80

Chapter 3

Manipulator Kinematics

The kinematics of a robot manipulator describes the relationship between
the motion of the joints of the manipulator and the resulting motion of
the rigid bodies which form the robot. This chapter gives a description
of the kinematics for a general n degree of freedom, open-chain robot
manipulator using the tools presented in Chapter 2. We also present a
brief treatment of redundant and parallel manipulators using this same
framework.

1 Introduction

Most modern manipulators consist of a set of rigid links connected to-
gether by a set of joints. Motors are attached to the joints so that the
overall motion of the mechanism can be controlled to perform a given
task. A tool, typically a gripper of some sort, is attached to the end of
the robot to interact with the environment.

Although any type of joint mechanism can be used to connect the links
of a robot, traditionally the joints are chosen from a set of six mechanisms
called lower pairs. These special types of joint mechanisms correspond to
subgroups of the special Euclidean group SE(3). They represent revolute,
prismatic, helical, cylindrical, spherical, and planar joints.

The revolute, prismatic, and helical joints each correspond to screw
motions, with the helical joint corresponding to a general screw with fi-
nite, nonzero pitch. A cylindrical joint has two independent degrees of
freedom and is typically constructed by combining a revolute and a pris-
matic joint such that their axes are coincident. Revolute and prismatic
joints are by far the most common type of joint encountered in robotics.

A spherical joint is a mechanism which is capable of arbitrary rota-
tions. Passive spherical joints often consist of a ball inserted into a socket,
and are therefore referred to as ball and socket joints. Unfortunately, this

81

type of mechanism does not work well if the joint is to exert forces and
torques, and hence actuated spherical joints are most often constructed
by combining three revolute joints (with motors) such that their axes all
intersect at a point. The orientation of the joint is then given by

R = ebω1θ1ebω2θ2ebω3θ3 ,

where ω1, ω2, ω3 ∈ R3 represent the directions of the three axes. This is
very similar to an Euler angle parameterization of orientation and has
the same limitations in terms of singularities of the mechanism. Spher-
ical mechanisms are often used as wrists in robot manipulators to allow
arbitrary orientation of the gripper or tool at the end of the robot.

Planar joints allow for arbitrary translation and rotation in the plane.
Along with helical joints, they are the least commonly used of the lower-
pair mechanisms. A planar joint can be built from a revolute joint at-
tached to two independent prismatic joints. The motion of a planar joint
is restricted to SE(2), regarded as a 3-dimensional subgroup of SE(3).

Modern robot manipulators, and kinematic mechanisms in general,
are typically constructed by connecting different lower-pair joints together
using rigid links. Since each of the joints restricts the motion of adjacent
links to a subgroup of SE(3), the tools developed in the last chapter
provide a natural starting point for the analysis of such mechanisms. In
this chapter and the next, we concentrate on the kinematics, dynamics,
and control of open-chain robot manipulators, in which a number of links
are attached serially by a set of actuated joints. By controlling the forces
and torques on each of the links, we seek to move the robot in a specified
way.

The heart of the formulation which we present here is the product of
exponentials formula, which represents the kinematics of an open-chain
mechanism as the product of exponentials of twists. This setting works
whenever the joints of the robot consist of either revolute, prismatic, or
helical joints, which is the case for practically all commercially available
robot manipulators. It provides a global, geometric representation of the
kinematics of a manipulator which greatly simplifies the analysis of the
mechanism and provides a very structured parameterization for open-
chain robots.

This chapter is organized as follows: Section 2 contains a derivation
of the product of exponentials formula for the forward kinematics of an
arbitrary open-chain manipulator. We concentrate on the most general
case, where the end-effector configuration lies in SE(3). Section 3 dis-
cusses the inverse problem of finding a set of joint angles which causes
the end-effector to have a desired configuration. We make extensive use
of a set of subproblems originally proposed by Paden and Kahan which
are very closely related to the exponential representation of rigid body
motion. Section 4 derives the velocity and force relationships between

82

S

link 1

link 2joint 1

joint 2

θ1

θ2

link 3

Base (link 0)

joint 3 (prismatic)

joint 4 (revolute)

link 4
θ4

θ3

T

Figure 3.1: Numbering conventions for an AdeptOne robot.

the end-effector and the joints, and introduces the manipulator Jacobian
for a robot. Finally, in Section 5 we extend some of the main results of
this chapter to redundant manipulators and parallel mechanisms.

2 Forward Kinematics

2.1 Problem statement

The forward kinematics of a robot determines the configuration of the
end-effector (the gripper or tool mounted on the end of the robot) given
the relative configurations of each pair of adjacent links of the robot. In
this section, we restrict ourselves to open-chain manipulators in which
the links form a single serial chain and each pair of links is connected
either by a revolute joint or a prismatic (sliding) joint. To fix notation,
we number the joints from 1 to n, starting at the base, and number the
links such that joint i connects links i − 1 and i. Link 0 is taken to be
the base of the manipulator and link n is attached rigidly to the end-
effector. Figure 3.1 illustrates our choice of notational conventions for an
AdeptOne robot (a type of SCARA manipulator).

The joint space Q of a manipulator consists of all possible values of
the joint variables of the robot. This is also the configuration space of

83

the robot, since specifying the joint angles specifies location of all of the
links of the robot. For revolute joints, the joint variable is given by an
angle θi ∈ [0, 2π) with the angle 2π equated to the angle 0. This set of
joint angles is naturally associated with a unit circle in the plane, denoted
S1, and hence we write θi ∈ S1 for revolute joints. We measure all joint
angles using a right-handed coordinate system, so that an angle about
a directed axis is positive if it represents a clockwise rotation as viewed
along the direction of the axis. Prismatic joints are described by a linear
displacement θi ∈ R along a directed axis, where positive displacement is
taken along the direction of the axis.

The joint space Q is the Cartesian product between each of these
individual joint spaces. The number of degrees of freedom of an open-
chain manipulator is equal to the the number of joints in the manipulator.
For the four degree of freedom SCARA robot of Figure 3.1, for instance,
we have θ = (θ1, θ2, θ3, θ4) ∈ S1 × S1 × R × S1 = Q. For manipulators
with multiple revolute joints, we use Tp to represent the p-torus, defined
to be the Cartesian product of p copies of S1: Tp = S1 × · · · × S1. The
joint space of a manipulator with p revolute joints and r prismatic joints
is Q = Tp ×Rr and has p+ r degrees of freedom. In practice, Q may be
defined to be a subset of this unrestricted joint space in order to account
for joint constraints such as finite displacements and rotations.

We attach two coordinate frames to the manipulator, as illustrated in
Figure 3.1. The base frame, S, is attached to a point on the manipulator
which is stationary with respect to link 0. Usually, S is attached directly
to link 0, although this need not be the case, as we shall see later. (The
reason for the use of the letter S instead of B is to avoid confusing the
base frame with the body frame, which is ordinarily attached to a moving
object.) The tool frame, T , is attached to the end-effector of the robot,
so that the tool frame moves when the joints of the robot move.

The forward kinematics problem can now be formalized. For simplic-
ity, we refer to all joint variables as angles, although both angles and
displacements are allowed, depending on the joint type. Given a set of
joint angles θ ∈ Q, we wish to determine the configuration of the tool
frame T relative to the base frame S. The forward kinematics is repre-
sented by a mapping gst : Q → SE(3) which describes this relationship.
The goal of this section is to show how to explicitly construct gst for
a given open-chain robot manipulator and explore the structure of this
mapping.

Classically, the forward kinematics map for an open-chain manipula-
tor is constructed by composing the rigid motions due to the individual
joints. Consider, for example, the two degree of freedom manipulator
shown in Figure 3.2. To compute the configuration of the tool frame T
relative to the base frame S, we concatenate the rigid motions between

84

S

TL2

L1

θ2

θ1

Figure 3.2: A two degree of freedom manipulator.

adjacent frames:

gst(θ1, θ2) = gsl1(θ1)gl1l2(θ2)gl2t.

The mapping gst : T2 → SE(3) represents the forward kinematics of the
manipulator: it gives the end-effector configuration as a function of the
joint angles.

This procedure is easily extended to any open-chain mechanism. If we
define gli−1li(θi) as the transformation between the adjacent link frames,
then the overall kinematics are given by

gst(θ) = gsl1(θ1)gl1l2(θ2) · · · gln−1ln(θn)glnt. (3.1)

Equation (3.1) is a general formula for the forward kinematics map of an
open-chain manipulator in terms of the relative transformations between
adjacent link frames.

2.2 The product of exponentials formula

A more geometric description of the kinematics can be obtained by using
the fact that motion of the individual joints is generated by a twist associ-
ated with the joint axis. Recall that if ξ is a twist, then the rigid motion
associated with rotating and translating along the axis of the twist is
given by

gab(θ) = e
bξθgab(0).

If ξ corresponds to a prismatic (infinite pitch) joint, then θ ∈ R is the
amount of translation; otherwise, θ ∈ S1 measures the angle of rotation
about the axis.

85

Consider again the two degree of freedom manipulator shown in Fig-
ure 3.2. Suppose that we fix the first joint and consider the configuration
of the tool frame as a function of θ2 only. This is a simple revolute (zero-
pitch) screw motion about the axis of the second joint and hence we can
write

gst(θ2) = e
bξ2θ2gst(0),

where ξ2 is the twist corresponding to rotation about the second joint.
Next, fix θ2 and move only θ1. By composition, the end-effector configu-
ration becomes

gst(θ1, θ2) = e
bξ1θ1gst(θ2) = e

bξ1θ1e
bξ2θ2gst(0), (3.2)

where ξ1 is the twist associated with the first joint. Equation (3.2) is an
alternative formula for the manipulator forward kinematics. Note that ξ1
and ξ2 are constant twists obtained by evaluating the screw motion for
each joint at the θ1 = θ2 = 0 configuration of the manipulator.

The simple form of equation (3.2) appears to rely on moving θ2 first,
followed by θ1. This allowed us to represent the joint motions as twists
about constant axes. To show that this representation does not depend
on the order in which we move the joints, we can derive the forward
kinematics by moving θ1 first, and then θ2. In this case,

gst(θ1) = e
bξ1θ1gst(0)

is the motion due to moving θ1 with θ2 fixed. This motion moves the
axis of θ2, and rotation of the second link occurs around a new axis,

ξ′2 = Ad
e

bξ1θ1 ξ2.

Using the properties of the matrix exponential (see Exercise 8 in Chap-
ter 2), the rigid body transformation

e
bξ′2θ2 = e

bξ1θ1
(
e

bξ2θ2
)
e−

bξ1θ1

describes motion about the new axis. Thus,

gst(θ1, θ2) = e
bξ′2θ2e

bξ1θ1gst(0)

= e
bξ1θ1

(
e

bξ2θ2
)
e−

bξ1θ1e
bξ1θ1gst(0)

= e
bξ1θ1e

bξ2θ2gst(0),

as before.
We can generalize this procedure to find the forward kinematics map

for an arbitrary open-chain manipulator with n degrees of freedom. Let
S be a frame attached to the base of the manipulator and T be a frame

86

attached to the last link of the manipulator. Define the reference con-
figuration of the manipulator to be the configuration of the manipulator
corresponding to θ = 0 and let gst(0) represent the rigid body trans-
formation between T and S when the manipulator is in its reference
configuration. For each joint, construct a twist ξi which corresponds to
the screw motion for the ith joint with all other joint angles held fixed at
θj = 0. For a revolute joint, the twist ξi has the form

ξi =

[
−ωi × qi

ωi

]
,

where ωi ∈ R3 is a unit vector in the direction of the twist axis and
qi ∈ R3 is any point on the axis.1 For a prismatic joint,

ξi =

[
vi
0

]
,

where vi ∈ R3 is a unit vector pointing in the direction of translation.
All vectors and points are specified relative to the base coordinate frame
S.

Combining the individual joint motions, the forward kinematics map,
gst : Q→ SE(3), is given by

gst(θ) = e
bξ1θ1e

bξ2θ2 · · · ebξnθngst(0) (3.3)

The ξi’s must be numbered sequentially starting from the base, but gst(θ)
gives the configuration of the tool frame independently of the order
in which the rotations and translations are actually performed. Equa-
tion (3.3) is called the product of exponentials formula for the manipulator
forward kinematics.

Example 3.1. SCARA forward kinematics
Consider the SCARA manipulator shown in Figure 3.3. It consists of
four joints—three revolute and one prismatic (note that we have chosen
to order the joints differently than for the AdeptOne robot in Figure 3.1).
We let θ = 0 correspond to the fully extended configuration and attach
base and tool frames as shown in the figure.

The transformation between tool and base frames at θ = 0 is given
by

gst(0) =

[
I
(0
l1+l2
l0

)

0 1

]
.

1We choose the convention −ω×q instead of q×ω since the former can be correctly
interpreted in both the spatial and planar cases (see Exercise 11 in Chapter 2).

87

q2

T

Sq1

x

z

y

θ1

l1

θ2

l0

l2

θ3

θ4

q3

Figure 3.3: SCARA manipulator in its reference configuration.

To construct the twists for the revolute joints, note that

ω1 = ω2 = ω3 =




0
0
1





and we can choose axis points

q1 =




0
0
0



 q2 =




0
l1
0



 q3 =




0

l1 + l2
0



 .

This yields twists

ξ1 =




0
0
0
0
0
1



 ξ2 =




l1
0
0
0
0
1



 ξ3 =




l1+l2

0
0
0
0
1



 .

The prismatic joint points in the z direction and has an associated twist

ξ4 =

[
v4
0

]
=




0
0
1
0
0
0



 .

The forward kinematics map of the manipulator has the form

gst(θ) = e
bξ1θ1e

bξ2θ2e
bξ3θ3e

bξ4θ4gst(0) =

[
R(θ) p(θ)

0 1

]
.

88

The individual exponentials are given by

e
bξ1θ1 =





cos θ1 − sin θ1 0 0
sin θ1 cos θ1 0 0

0 0 1 0
0 0 0 1





e
bξ2θ2 =





cos θ2 − sin θ2 0 l1 sin θ2
sin θ2 cos θ2 0 l1(1− cos θ2)

0 0 1 0
0 0 0 1





e
bξ3θ3 =





cos θ3 − sin θ3 0 (l1 + l2) sin θ3
sin θ3 cos θ3 0 (l1 + l2)(1− cos θ3)

0 0 1 0
0 0 0 1





e
bξ4θ4 =





1 0 0 0
0 1 0 0
0 0 1 θ4
0 0 0 1



 .

Expanding the terms in the product of exponentials formula yields

gst(θ) =

[
R(θ) p(θ)

0 1

]

R(θ) =




cos(θ1 + θ2 + θ3) − sin(θ1 + θ2 + θ3) 0
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) 0

0 0 1





p(θ) =




−l1 sin θ1 − l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2)

l0 + θ4



 .

(3.4)

Example 3.2. Elbow manipulator forward kinematics
Consider the elbow manipulator shown in Figure 3.4. The mechanism
consists of two intersecting axes at the shoulder, an elbow, and a spherical
wrist (modeled as three intersecting axes). The reference configuration
(θ = 0) is fully extended, as shown.

The forward kinematics is computed by calculating the individual
twist motions for each joint. The transformation between the tool and
base frames at θ = 0 is given by

gst(0) =

[
I
(0
l1+l2
l0

)

0 1

]
.

The first two joints have twists

ξ1 =




−

„
0
0
1

«
×

„
0
0
l0

«

„
0
0
1

«



 =




0
0
0
0
0
1



 ξ2 =




−

„ −1
0
0

«
×

„
0
0
l0

«

„ −1
0
0

«



 =




0

−l0
0
−1
0
0



 .

89

l0

T

S

q1

ξ5

q2

ξ2 ξ3

ξ1 ξ4

l1 l2
ξ6

Figure 3.4: Elbow manipulator.

Note that we have used q1 = (0, 0, l0) for the first twist; we could just as
well have used the origin or any other point on the axis of the twist. The
other twists are calculated in a similar manner:

ξ3 =




0

−l0
l1
−1
0
0



 ξ4 =




l1+l2

0
0
0
0
1



 ξ5 =




0

−l0
l1+l2
−1
0
0



 ξ6 =




−l0
0
0
0
1
0



 .

The full forward kinematics are

gst(θ) = e
bξ1θ1 · · · ebξ6θ6gst(0) =

[
R(θ) p(θ)

0 1

]

where

R(θ) =




r11 r12 r13
r21 r22 r23
r31 r32 r33





p(θ) =




− sin θ1(l1 cos θ2 + l2 cos(θ2 + θ3))
cos θ1(l1 cos θ2 + l2 cos(θ2 + θ3))
l0 − l1 sin θ2 − l2 sin(θ2 + θ3)



 ,

and, using the notation ci = cos θi, si = sin θi, cij = cos(θi + θj), sij =

90

sin(θi + θj),

r11 = c6(c1c4 − s1c23s4) + s6(s1s23c5 + s1c23c4s5 + c1s4s5)

r12 = −c5(s1c23c4 + c1s4) + s1s23s5

r13 = c6(−c5s1s23 − (c23c4s1 + c1s4)s5) + (c1c4 − c23s1s4)s6

r21 = c6(c4s1 + c1c23s4)− (c1c5s23 + (c1c23c4 − s1s4)s5)s6
r22 = c5(c1c23c4 − s1s4)− c1s23s5
r23 = c6(c1c5s23 + (c1c23c4 − s1s4)s5) + (c4s1 + c1c23s4)s6

r31 = −(c6s23s4)− (c23c5 − c4s23s5)s6
r32 = −(c4c5s23)− c23s5
r33 = c6(c23c5 − c4s23s5)− s23s4s6.

2.3 Parameterization of manipulators via twists

Using the product of exponentials formula, the kinematics of a manip-
ulator is completely characterized by the twist coordinates for each of
the joints. We now consider some issues related to parameterizing robot
motion using twists.

Choice of base frame and reference configuration

In the examples above, we chose the base frame for the manipulator to
be at the base of the robot. Other choices of the base frame are possible,
and can sometimes lead to simplified calculations. One natural choice is
to place the base frame coincident with the tool frame in the reference
configuration. That is, we choose a base frame which is fixed relative to
the base of the robot and which lines up with the tool frame when θ = 0.
This simplifies calculations since gst(0) = I with this choice of base frame
and hence

gst(θ) = e
bξ1θ1 · · · ebξnθn .

A further degree of freedom in specifying the manipulator kinematics
is the choice of the reference configuration for the manipulator. Recall
that the reference configuration was the configuration corresponding to
setting all of the joint variables to 0. By adding or subtracting a fixed
offset from each joint variable, we can define any configuration of the
manipulator as the reference configuration. The twist coordinates for
the individual joints of a manipulator depend on the choice of reference
configuration (as well as base frame) and so the reference configuration is
usually chosen such that the kinematic analysis is as simple as possible.
For example, a common choice is to define the reference configuration

91

q2
S, T

l1

θ1

θ2

l2

θ3

θ4

q1

Figure 3.5: SCARA manipulator in its reference configuration, with base
frame coincident with tool frame.

such that points on the twist axes for the joints have a simple form, as
in all of the examples above.

Example 3.3. SCARA forward kinematics with alternate base
frame
Consider the SCARA manipulator with base frame coincident with the
tool frame at θ = 0, as shown in Figure 3.5. The twists are now calculated
with respect to the new base frame:

ξ1 =




−

„
0
0
1

«
×

„
0

−l1−l2
0

«

„
0
0
1

«



 =




−l1−l2

0
0
0
0
1





ξ2 =




−

„
0
0
1

«
×

„
0

−l2
0

«

„
0
0
1

«



 =




−l2
0
0
0
0
1





and similar calculations yield:

ξ3 =




0
0
0
0
0
1



 ξ4 =




0
0
1
0
0
0



 .

92

Expanding the product of exponentials formula gives

gst(θ) =

[
R(θ) p(θ)

0 1

]

R(θ) =




cos(θ1 + θ2 + θ3) − sin(θ1 + θ2 + θ3) 0
sin(θ1 + θ2 + θ3) cos(θ1 + θ2 + θ3) 0

0 0 1





p(θ) =




−l1 sin θ1 − l2 sin(θ1 + θ2)

−l1 − l2 + l1 cos θ1 + l2 cos(θ1 + θ2)
θ4



 .

(3.5)

Note that gst(0) = I, which is consistent with the fact that the base
and tool frames are coincident at θ = 0. Compare this formula with the
kinematics map derived in Example 3.1.

Relationship with Denavit-Hartenberg parameters

Given a base frame S and a tool frame T , the coordinates of the twists
corresponding to each joint of a robot manipulator provide a complete
parameterization of the kinematics of the manipulator. An alternative
parameterization, which is the de facto standard in robotics, is the use of
Denavit-Hartenberg parameters [25]. In this section, we discuss the rela-
tionships between these two parameterizations and their relative merits.

Denavit-Hartenberg parameters are obtained by applying a set of rules
which specify the position and orientation of frames Li attached to each
link of the robot and then constructing the homogeneous transformations
between frames, denoted gli−1li . By convention, we identify the base
frame S with L0. The kinematics of the mechanism can be written as

gst(θ) = gl0l1(θ1)gl1l2(θ2) · · · gln−1,ln(θn)glnt, (3.6)

just as in equation (3.1). Each of the transformations gli−1,li has the form

gli−1,li =





cosφi − sinφi cosαi sinφi sinαi ai cosφi
sinφi cosφi cosαi − cosφi sinαi ai sinφi

0 sinαi cosαi di
0 0 0 1



 ,

where the four scalars αi, ai, di, and φi are the parameters for the ith
link. For revolute joints, φi corresponds to the joint variable θi, while
for prismatic joints, di corresponds to the joint variable θi. Denavit-
Hartenberg parameters are available for standard industrial robots and
are used by most commercial robot simulation and programming systems.

It may seem somewhat surprising that only four parameters are needed
to specify the relative link displacements, since the twists for each joint
have six independent parameters. This is achieved by cleverly choosing

93

the link frames so that certain cancellations occur. In fact, it is possible
to give physical interpretations to the various parameters based on the
relationships between adjacent link frames. An excellent discussion can
be found in Spong and Vidyasagar [110].

There is not a simple one-to-one mapping between the twist coordi-
nates for the joints of a robot manipulator and the Denavit-Hartenberg
parameters. This is because the twist coordinates for each joint are speci-
fied with respect to a single base frame and hence do not directly represent
the relative motions of each link with respect to the previous link. To
see this, let ξi−1,i be the twist for the ith link relative to the previous link
frame. Then, gli−1li is given by

gli−1li = e
bξi−1,iθigli−1li(0) (3.7)

and the forward kinematics map becomes

gst(θ) = e
bξ01θ1gl0l1(0) e

bξ12θ2gl1l2(0) · · · ebξn−1,nθngln−1ln(0). (3.8)

This is evidently not the same as the product of exponentials formula,
though it bears some resemblance to it.

The relationship between the twists ξi and the pairs gli−1li(0) and
ξi−1,i can be determined using the adjoint mapping. We first rewrite
equation (3.8) as

gst(θ) = e
bξ01θ1

(
gl0l1(0)e

bξ12θ2g−1
l0l1

(0)
)
·

(
gl0l2(0)e

bξ23θ3g−1
l0l2

(0)
)
· · ·
(
gl0ln−1

(0)e
bξn−1,nθng−1

l0ln−1
(0)
)
gl0t(0). (3.9)

We can simplify this equation by making use of the relationship

ge
bξθg−1 = e(Adg ξ)

∧θ

to obtain

gst(θ) = e
bξ01θ1e

(Adgl0l1
(0) ξ12)

∧θ2 · · · e(Adgl0ln−1
(0) ξn−1,n)∧θn

gl0t(0).

It follows immediately that

ξi = Adgl0li−1
(0) ξi−1,i. (3.10)

This formula verifies that the twist ξi is the joint twist for the ith joint
in its reference configuration and written relative to the base coordinate
frame.

Given the Denavit-Hartenberg parameters for a manipulator, the cor-
responding twists ξi can be determined by first parameterizing gi−1,i

using exponential coordinates, as in equation (3.7), and then applying

94

equation (3.10). However, in almost all instances it is substantially easier
to construct the joint twists ξi directly, by writing down the direction of
the joint axes and, in the case of revolute joints, choosing a convenient
point on each axis. Indeed, one of the most attractive features of the prod-
uct of exponentials formula is its usage of only two coordinate frames, the
base frame S, and the tool frame T . This property, combined with the
geometric significance of the twists ξi, make the product of exponentials
representation a superior alternative to the use of Denavit-Hartenberg
parameters.

2.4 Manipulator workspace

The workspace of a manipulator is defined as the set of all end-effector
configurations which can be reached by some choice of joint angles. If Q
is the configuration space of a manipulator and gst : Q → SE(3) is the
forward kinematics map, then the workspace W is defined as the set

W = {gst(θ) : θ ∈ Q} ⊂ SE(3). (3.11)

The workspace is used when planning a task for the manipulator to ex-
ecute; all desired motions of the manipulator must remain within the
workspace. We refer to this notion of workspace as the complete workspace
of a manipulator.

Characterizing the workspace as a subset of SE(3) is often somewhat
difficult to interpret. Instead, one can consider the set of positions (in
R3) which can be reached by some choice of joint angles. This set is called
the reachable workspace and is defined as

WR = {p(θ) : θ ∈ Q} ⊂ R3, (3.12)

where p(θ) : Q→ R3 is the position component of the forward kinematics
map gst. The reachable workspace is the volume of R3 which can be
reached at some orientation.

Since the reachable workspace does not consider ability to arbitrarily
orient the end-effector, for some tasks it is not a useful measure of the
range of a manipulator. The dextrous workspace of a manipulator is the
volume of space which can be reached by the manipulator with arbitrary
orientation:

WD = {p ∈ R3 : ∀R ∈ SO(3), ∃ θ with gst(θ) = (p,R)} ⊂ R3. (3.13)

The dextrous workspace is useful in the context of task planning since it
allows the orientation of the end-effector to be ignored when positioning
objects in the dextrous workspace.

For a general robot manipulator, the dextrous workspace can be very
difficult to calculate. A common feature of industrial manipulators is to

95

(a) (b)

(c) (d)

l3

θ1

l2

θ3

l1

l1 l2 l3
2l3 2l3

θ2

Figure 3.6: Workspace calculations for a planar three-link robot (a).
The construction of the workspace is illustrated in (b). The reachable
workspace is shown in (c) and the dextrous workspace is shown in (d).

place a spherical wrist at the end of the manipulator, as in the elbow
manipulator given in Example 3.2. Recall that a spherical wrist consists
of three orthogonal revolute axes which intersect at a point. If the end-
effector frame is placed at the origin of the wrist axes, then the spherical
wrist can be used to achieve any orientation at a given end-effector po-
sition. Hence, for a manipulator with a spherical wrist, the dextrous
workspace is equal to the reachable workspace, WD = WR. Furthermore,
the complete workspace for the end-effector satisfies W = WR × SO(3).
This analysis only holds when the end-effector frame is placed at the
center of the spherical wrist; if an offset is present, the analysis becomes
more complex.

Example 3.4. Workspace for a planar three-link robot
Consider the planar manipulator shown in Figure 3.6a. Let g = (x, y, φ)

96

represent the position and orientation of the end-effector. The forward
kinematics of the mechanism can be derived using the product of expo-
nentials formula, but are more easily derived using plane geometry:

x = l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

y = l1 sin θ1 + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)

φ = θ1 + θ2 + θ3.

(3.14)

We take l1 > l2 > l3, and assume l1 > l2 + l3.
The reachable workspace is calculated by ignoring the orientation of

the end-effector. To generate it, we first take θ1 and θ2 as fixed. The
set of reachable points becomes a circle of radius l3 formed by sweeping
θ3 through all angles (see Figure 3.6b). We now let θ2 vary through all
angles to get an annulus with inner radius l2− l3 and outer radius l2 + l3
centered at the end of the first link. Finally, we generate the reachable
workspace by sweeping the annulus through all values of θ1, to give the
reachable workspace. The final construction is shown in Figure 3.6c. WR

is an annulus with inner radius l1 − l2 − l3 and outer radius l1 + l2 + l3.
The dextrous workspace for this manipulator is somewhat subtle. Al-

though the manipulator has the planar equivalent of a spherical wrist,
the end-effector frame is not aligned with the center of the wrist. This
reduces the size of the dextrous workspace by 2l3 on the inner and outer
edges, as shown in Figure 3.6d.

3 Inverse Kinematics

We now consider the inverse kinematics problem: given a desired config-
uration for the tool frame, find joint angles which achieve that configu-
ration. That is, given a forward kinematics map gst : Q → SE(3) and a
desired configuration gd ∈ SE(3), we would like to solve the equation

gst(θ) = gd (3.15)

for some θ ∈ Q. This problem may have multiple solutions, a unique
solution, or no solution.

3.1 A planar example

To illustrate some of the issues in inverse kinematics, we first consider
the inverse kinematics of the planar two-link manipulator shown in Fig-
ure 3.7a. The forward kinematics can be determined using plane geome-
try:

x = l1 cos θ1 + l2 cos(θ1 + θ2)

y = l1 sin θ1 + l2 sin(θ1 + θ2).

97

(b)

l2

l1

θ2

θ1

(x, y)

B

α

r
θ2

θ1φ

β

(x, y)

x

y

(a)

Figure 3.7: Inverse kinematics of a planar two-link manipulator.

The inverse problem is to solve for θ1 and θ2, given x and y. A standard
trick is to solve the problem using polar coordinates, (r, φ), as shown in

Figure 3.7b. From this viewpoint, θ2 is determined by r =
√
x2 + y2,

and the law of cosines gives

θ2 = π ± α α = cos−1

(
l21 + l22 − r2

2l1l2

)
. (3.16)

If α 6= 0, there are two distinct values of θ2 which give the appropriate
radius; the second is referred to as the “flip solution” and is shown as a
dashed line in Figure 3.7b. The complete solution is given by solving for
φ and using this to determine θ1. This problem must be solved for each
possible value of θ2, yielding

θ1 = atan2(y, x)± β β = cos−1

(
r2 + l21 − l22

2l1r

)
,

where the sign used for β agrees with that used for α.
This planar example illustrates several important features of inverse

kinematics problems. In solving an inverse kinematics problem, one first
divides the problem into specific subproblems, such as solving for θ2 given
r and then using θ1 to rotate the end-effector to the proper position.
Each subproblem may have zero, one, or many solutions depending on
the desired end-effector location. If the configuration is outside of the
workspace of the manipulator, then no solution can exist and one of
the subproblems must fail to have a solution (consider what happens
if r > l1 + l2 in the example above). Multiple solutions occur when
the desired configuration is within the workspace but there are multiple
joint configurations which all map to the same end-effector location. If
a subproblem generates multiple solutions, then we must complete the
solution procedure for all joint angles generated by the subproblem.

98

Traditionally, inverse kinematics solutions are separated into classes:
closed-form solutions and numerical solutions. Closed-form solutions,
such as the one given above, allow for fast and efficient calculation of the
joint angles which give a desired end-effector configuration. Numerical
solutions rely on an interactive procedure to solve equation (3.15). Most
industrial manipulators have closed-form solutions. These solutions are
obtained in a manner similar to that described above: using geometric
and algebraic identities, solve the set of nonlinear, coupled, algebraic
equations which define the inverse kinematics problem. An introduction
to classical techniques for solving inverse kinematics problems is given in
Craig [21].

3.2 Paden-Kahan subproblems

Using the product of exponentials formula for the forward kinematics
map, it is possible to develop a geometric algorithm to solve the inverse
kinematics problem. This method was originally presented by Paden [85]
and built on the unpublished work of Kahan [46].

To solve the inverse kinematics problem, we first solve a number of
subproblems which occur frequently in inverse solutions for common ma-
nipulator designs. One then seeks to reduce the full inverse kinematics
problem into appropriate subproblems whose solutions are known. One
feature of the subproblems presented here is that they are both geomet-
rically meaningful and numerically stable. Note that this set of subprob-
lems is by no means exhaustive and there may exist manipulators which
cannot be solved using these canonical problems. Additional subproblems
are explored in the exercises.

For each of the subproblems presented below, we give a statement of
the geometric problem to be solved and a detailed solution. On a first
reading of this section, it may be difficult to understand the relevance of
the specific subproblems presented here. We recommend that the first-
time reader skip the solutions until she sees how the subproblems are
used in the examples presented later in this section.

Subproblem 1. Rotation about a single axis
Let ξ be a zero-pitch twist with unit magnitude and p, q ∈ R3 two points.
Find θ such that

e
bξθp = q. (3.17)

Solution. This problem corresponds to rotating a point p about a given
axis ξ until it coincides with a second point q, as shown in Figure 3.8a.
Let r be a point on the axis of ξ. Define u = (p − r) to be the vector
between r and p, and v = (q − r) the vector between r and q. It follows

from equation (3.17) and the fact that exp(ξ̂θ)r = r (since r is on the
axis of ξ) that

ebωθu = v, (3.18)

99

(a)

θ

u′

v′

(b)

r

q

p

θ

v

u

ξ

Figure 3.8: Subproblem 1: (a) Rotate p about the axis of ξ until it is
coincident with q. (b) The projection of u and v onto the plane normal
to the twist axis.

where we have used the fact that u and v are vectors, and hence we have
exp(ξ̂θ)u = exp(ω̂θ)u.

To determine when the problem has a solution, define u′ and v′ to be
the projections of u and v onto the plane perpendicular to the axis of ξ.
If ω ∈ R3 is a unit vector in the direction of the axis of ξ, then

u′ = u− ωωTu and v′ = v − ωωT v.

The problem has a solution only if the projections of u and v onto the
ω-axis and onto the plane perpendicular to ω have equal lengths. More
formally, if we project equation (3.18) onto the span of ω and the null
space of ωT , we obtain the necessary conditions

ωTu = ωT v and ‖u′‖ = ‖v′‖. (3.19)

If equation (3.19) is satisfied, then we can find θ by looking only at
the projected vectors u′ and v′ as shown in Figure 3.8b. If u′ 6= 0, then
we can determine θ using the relationships

u′ × v′ = ω sin θ‖u′‖‖v′‖
u′ · v′ = cos θ‖u′‖‖v′‖ =⇒ θ = atan2(ωT (u′ × v′), u′T v′).

If u′ = 0, then there are an infinite number of solutions since, in this case,
p = q and both points lie on the axis of rotation.

Subproblem 2. Rotation about two subsequent axes
Let ξ1 and ξ2 be two zero-pitch, unit magnitude twists with intersecting
axes and p, q ∈ R3 two points. Find θ1 and θ2 such that

e
bξ1θ1e

bξ2θ2p = q. (3.20)

100

θ1r

p

c

q

ξ2

ξ1

θ2

Figure 3.9: Subproblem 2: Rotate p about the axis of ξ2 followed by a
rotation around the axis of ξ1 such that the final location of p is coincident
with q.

Solution. This problem corresponds to rotating a point p first about the
axis of ξ2 by θ2 and then about the axis of ξ1 by θ1, so that the final
location of p is coincident with the point q. This motion is depicted in
Figure 3.9. If the axes of ξ1 and ξ2 coincide, this problem reduces to
Subproblem 1 and any θ1, θ2 such that θ1 + θ2 = θ is a solution, where θ
is the solution to Subproblem 1.

If the two axes are not parallel, i.e., ω1×ω2 6= 0, then let c be a point
such that

e
bξ2θ2p = c = e−

bξ1θ1q. (3.21)

In other words, c represents the point to which p is rotated about the
axis of ξ2 by θ2. Let r be the point of intersection of the two axes, so
that

e
bξ2θ2(p− r) = c− r = e−

bξ1θ1(q − r). (3.22)

As before, define vectors u = (p − r), v = (q − r), and z = (c − r).
Substituting these expressions into equation (3.22) gives

ebω2θ2u = z = e−bω1θ1v,

which implies that

ωT2 u = ωT2 z and ωT1 v = ωT1 z (3.23)

and ‖u‖2 = ‖z‖2 = ‖v‖2. Furthermore, since ω1, ω2, and ω1 × ω2 are
linearly independent, we can write

z = αω1 + βω2 + γ(ω1 × ω2) (3.24)

101

and
‖z‖2 = α2 + β2 + 2αβωT1 ω2 + γ2‖ω1 × ω2‖2. (3.25)

Substituting equation (3.24) into equation (3.23) gives a system of two
equations in two unknowns:

ωT2 u = αωT2 ω1 + β

ωT1 v = α+ βωT1 ω2

=⇒
α =

(ωT1 ω2)ω
T
2 u− ωT1 v

(ωT1 ω2)2 − 1

β =
(ωT1 ω2)ω

T
1 v − ωT2 u

(ωT1 ω2)2 − 1
.

Solving equation (3.25) for γ2 and using ‖z‖2 = ‖u‖2 yields

γ2 =
‖u‖2 − α2 − β2 − 2αβωT1 ω2

‖ω1 × ω2‖2
.

This equation may have zero, one, or two real solutions. In the case that
a solution exists, we can find z—and hence c—given α, β, and γ.

To find θ1 and θ2, we solve

e
bξ2θ2p = c and e−

bξ1θ1q = c

using Subproblem 1. If there are multiple solutions for c, each of these
solutions gives a value for θ1 and θ2. Two solutions exist in the case
where the circles in Figure 3.9 intersect at two points, one solution when
the circles are tangential, and none when the circles fail to intersect.

Subproblem 3. Rotation to a given distance
Let ξ be a zero-pitch, unit magnitude twist; p, q ∈ R3 two points; and δ a
real number > 0. Find θ such that

‖q − ebξθp‖ = δ. (3.26)

Solution. This problem corresponds to rotating a point p about axis ξ
until the point is a distance δ from q, as shown in Figure 3.10a. A
solution exists if the circle defined by rotating p around ξ intersects the
sphere of radius δ centered at q.

To find the explicit solution, we again consider the projection of all
points onto the plane perpendicular to ω, the direction of the axis of ξ.
Let r be a point on the axis of ξ, and define u = (p− r) and v = (q − r)
so that

‖v − ebωθu‖2 = δ2. (3.27)

The projections of u and v are

u′ = u− ωωTu and v′ = v − ωωT v.

102

θ
r θ

u

v

q

δ

p

ξ

ωT (p−q)

(a)

δ′
v′

u′

ebωθu′

(b)

θ0

Figure 3.10: Subproblem 3: (a) Rotate p about the axis of ξ until it is
a distance δ from q. (b) The projection onto the plane perpendicular to
the axis. The dashed line is the “flip” solution.

We can also “project” δ by subtracting the component of p− q in the ω
direction,

δ′
2

= δ2 − |ωT (p− q)|2,

so that equation (3.27) becomes

‖v′ − ebωθu′‖2 = δ′
2

(see Figure 3.10b). If we let θ0 be the angle between the vectors u′ and
v′, we have

θ0 = atan2(ωT (u′ × v′), u′T v′). (3.28)

We can now use the law of cosines to solve for the angle φ = θ0 − θ. The
triangle formed by the center of the axis, exp(ω̂θ)u′, and v′ satisfies

‖u′‖2 + ‖v′‖2 − 2‖u′‖‖v′‖ cosφ = δ′
2

and therefore

θ = θ0 ± cos−1

(
‖u′‖2 + ‖v′‖2 − δ′2

2‖u′‖‖v′‖

)
. (3.29)

Equation (3.29) has either zero, one, or two solutions, depending on the
number of points in which the circle of radius ‖u′‖ intersects the circle of
radius δ′.

103

3.3 Solving inverse kinematics using subproblems

Given the solutions to the subproblems presented above, we must now
find techniques for converting the complete inverse kinematics problem
into the appropriate subproblems.

The basic technique for simplification is to apply the kinematic equa-
tions to special points, such as the intersection of two or more axes. This
is a potentially powerful operation since exp(ξ̂θ)p = p if p is on the axis
of a revolute twist ξ. Using this, we can eliminate the dependence of
certain joint angles by appropriate selection of points. For example, if we
wish to solve

e
bξ1θ1e

bξ2θ2e
bξ3θ3 = g,

with ξ1, ξ2, and ξ3 all zero-pitch twists, then applying both sides to a
point p on the axis of ξ3 yields

e
bξ1θ1e

bξ2θ2p = gp,

which can be solved using Subproblem 2 (in the case that ξ1 and ξ2
intersect).

Another common trick for reducing a problem to a subproblem is to
subtract a point from both sides of an equation and take the norm of
the result. Since rigid motions preserve norm, some dependencies can be
eliminated. For example, if we wish to solve

e
bξ1θ1e

bξ2θ2e
bξ3θ3 = g

for ξ3, and ξ1, ξ2 intersect at a point q, then we can apply both sides of
the equation to a point p that is not on the axis of ξ3 and subtract the
point q. Taking the norm of the result yields

δ := ‖gp− q‖ = ‖ebξ1θ1e
bξ2θ2e

bξ3θ3p− q‖
= ‖ebξ1θ1e

bξ2θ2(e
bξ3θ3p− q)‖

= ‖ebξ3θ3p− q‖

which is Subproblem 3.
We now show how the subproblems of Section 3.2 can be used to

solve the inverse kinematics of some common manipulators. Additional
examples appear in the exercises.

Example 3.5. Elbow manipulator inverse kinematics
The elbow manipulator in Figure 3.11 consists of a three degree of freedom
manipulator with a spherical wrist. This special structure simplifies the
inverse kinematics and fits nicely with the subproblems presented earlier.

The equation we wish to solve is

gst(θ) = e
bξ1θ1 · · · ebξ6θ6gst(0) = gd,

104

ξ5ξ2 ξ3

ξ1 ξ4

l0

l1 l2
ξ6

pb
qw

S

Figure 3.11: Elbow manipulator.

where gd ∈ SE(3) is the desired configuration of the tool frame. Post-
multiplying this equation by g−1

st (0) isolates the exponential maps:

e
bξ1θ1 · · · ebξ6θ6 = gdg

−1
st (0) =: g1. (3.30)

We determine the requisite joint angles in four steps.

Step 1 (solve for the elbow angle, θ3). Apply both sides of equation (3.30)
to a point pw ∈ R3 which is the common point of intersection for the wrist
axes. Since exp(ξ̂θ)pw = pw if pw is on the axis of ξ, this yields

e
bξ1θ1e

bξ2θ2e
bξ3θ3pw = g1pw. (3.31)

Subtract from both sides of equation (3.31) a point pb which is at the
intersection of the first two axes, as shown in Figure 3.11:

e
bξ1θ1e

bξ2θ2e
bξ3θ3pw − pb = e

bξ1θ1e
bξ2θ2

(
e

bξ3θ3pw − pb
)

= g1pw − pb. (3.32)

Using the property that the distance between points is preserved by rigid
motions, take the magnitude of both sides of equation (3.32):

‖ebξ3θ3pw − pb‖ = ‖g1pw − pb‖. (3.33)

This equation is in the form required for Subproblem 3, with p = pw,
q = pb, and δ = ‖g1pw − pb‖. Applying Subproblem 3, we solve for θ3.

Step 2 (solve for the base joint angles). Since θ3 is known, equation (3.31)
becomes

e
bξ1θ1e

bξ2θ2(e
bξ3θ3pw) = g1pw. (3.34)

Applying Subproblem 2 with p = exp(ξ̂3θ3)pw and q = g1pw gives the
values for θ1 and θ2.

105

Step 3 (solve for two of three wrist angles). The remaining kinematics
can be written as

e
bξ4θ4e

bξ5θ5e
bξ6θ6 = e−

bξ3θ3e−
bξ2θ2e−

bξ1θ1gdg
−1
st (0) =: g2. (3.35)

Apply both sides of equation (3.35) to a point p which is on the axis of
ξ6 but not on the ξ4, ξ5 axes. This gives

e
bξ4θ4e

bξ5θ5p = g2p. (3.36)

Apply Subproblem 2 to find θ4 and θ5.

Step 4 (solve for the remaining wrist angle). The only remaining un-
known is θ6. Rearranging the kinematics equation and applying both
sides to any point p which is not on the axis of ξ6,

e
bξ6θ6p = e−

bξ5θ5e−
bξ4θ4 · · · e−bξ1θ1gdg

−1
st (0)p =: q. (3.37)

Apply Subproblem 1 to find θ6.

At the end of this procedure, θ1 through θ6 are determined. There
are a maximum of eight possible solutions, due to multiple solutions for
equations (3.33), (3.34), and (3.36). Note that the overall procedure is to
first solve for the three angles which determine the position of the center
of the wrist and then solve for the wrist angles.

Example 3.6. Inverse kinematics of a SCARA manipulator
Consider the four degree of freedom SCARA manipulator shown in Fig-
ure 3.12. From the forward kinematics derived in Example 3.1 on page 87,
the tool configuration has the form

gst(θ) = e
bξ1θ1 · · · ebξ4θ4gst(0) =





cosφ − sinφ 0 x
sinφ cosφ 0 y

0 0 1 z
0 0 0 1



 =: gd

(3.38)
and hence we can solve the inverse kinematics given x, y, z, and φ as
in equation (3.38). We begin by solving for θ4. Applying both sides of
equation (3.38) to the origin of the tool frame gives

p(θ) =




−l1 sin θ1 − l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2)

l0 + θ4



 =




x
y
z



 ,

where p(θ) is the position component of the forward kinematics, given by
equation (3.4). From the form of p(θ), we see that θ4 = z−l0. Notice that
finding θ4 did not make use of any of the previously defined subproblems.

106

q2

T

Sq1

x

z

y

θ1

l1

θ2

l0

l2

θ3

θ4

q3

Figure 3.12: SCARA manipulator in its reference configuration.

Once θ4 is known, we can rearrange equation (3.38) to read

e
bξ1θ1e

bξ2θ2e
bξ3θ3 = gdg

−1
st (0)e−

bξ4θ4 =: g1. (3.39)

Let p be a point on the axis of ξ3 and q be a point on the axis of ξ1. Ap-
plying equation (3.39) to p, subtracting q from both sides, and applying
norms,

‖ebξ1θ1e
bξ2θ2p− q‖ = ‖ebξ1θ1(e

bξ2θ2p− q)‖
= ‖ebξ2θ2p− q‖ = ‖g1p− q‖ =: δ.

(3.40)

Application of Subproblem 3 gives the value of θ2. θ1 can now be found
by applying equation (3.39) to a point p′ on the axis of ξ3 and solving
Subproblem 1:

e
bξ1θ1e

bξ2θ2e
bξ3θ3p′ = e

bξ1θ1
(
e

bξ2θ2p′
)

= g1p
′.

Finally, we rearrange equation (3.39), shifting the (known) θ1 and θ2
terms to the right-hand side:

e
bξ3θ3 = e−

bξ2θ2e−
bξ1θ1gdg

−1
st (θ)e−

bξ4θ4 . (3.41)

Applying equation (3.41) to any point p which is not on the axis of ξ3 and
solving Subproblem 1 a final time gives θ3 and completes the solution.

There are a maximum of two possible solutions for the SCARA ma-
nipulator, corresponding to the solutions of equation (3.40).

107

3.4 General solutions to inverse kinematics problems

In the preceding sections, we have developed an elegant set of geometric
and conceptual subproblems in terms of which the inverse kinematics
solution of a large number of manipulators can be decomposed. The set
of subproblems and their extensions given in the exercises turn out to be
useful for decomposing the solution of the inverse kinematics equations,
primarily when the robot has at least some intersecting axes.

The question of how to solve the inverse kinematics problem in gen-
eral, (that is, in the absence of any intersections of the axes of the manipu-
lator) for both planar and spatial mechanisms is an extremely active area
of current research. In particular, there are many interesting questions
about the number of inverse kinematics solutions and how the computa-
tions can be mechanized in real-time. In this subsection, we give a brief
summary of some of the newest and most general approaches in this re-
gard, drawn from [57], [64] and [95]. Our development closely parallels
that of Manocha and Canny [64]. The approaches are primarily based on
classic elimination theory from algebraic geometry; this is a systematic
procedure for simultaneously eliminating n− 1 of the variables in a sys-
tem of n polynomials in n variables to obtain a single polynomial in one
variable. This procedure is a general procedure but also a “brute-force”
procedure, in that it only takes very simple properties of the manipulator
kinematics into account (unlike the solutions based on the subproblems
listed above). We illustrate this procedure, sometimes referred to as di-
alytical elimination, in the following example of three nonhomogeneous
polynomials in three variables.

Example 3.7. Dialytical elimination for three polynomials in
three variables
We will assume that the three polynomials f1, f2, f3 are nonhomogeneous
in x1, x2, x3 and are of the form




f1
f2
f3



 =




a1 b1 c1 d1 e1 g1
a2 b2 c2 d2 e2 g2
a3 b3 c3 d3 e3 g3









x2
1

x1x2

x1x3

x2
2

x3

1




=




0
0
0



 .

Here, ai, bi, ci, di, ei, gi, for i = 1, . . . , 3 are all real numbers. To solve
this system of three polynomials in x1, x2, x3 for their common zeros, we
eliminate x2, x3 to get a single polynomial in x1 in two steps:

Step 1. We express the above equation as a system of equations in x2, x3

108

with coefficients being polynomials in x1 as follows:




f1
f2
f3



 =




d1 e1 + c1x1 b1x1 a1x

2
1 + g1

d2 e2 + c2x1 b2x1 a2x
2
1 + g2

d3 e3 + c3x1 b3x1 a3x
2
1 + g3









x2
2

x3

x2

1



 =




0
0
0



 .

Step 2. We try to generate more polynomials which are independent2

of f1, f2, f3 until we have as many unknown monomials3 in x2, x3 as
there are equations. For example, multiplying f1, f2, f3 by x2 yields the
following set of polynomials which are independent of f1, f2, f3:




x2f1
x2f2
x2f3



 =




d1 e1 + c1x1 b1x1 a1x

2
1 + g1

d2 e2 + c2x1 b2x1 a2x
2
1 + g2

d3 e3 + c3x1 b3x1 a3x
2
1 + g3









x3
2

x2x3

x2
2

x2



 =




0
0
0



 .

Combining these equations with those for f1, f2, f3 yields the following
set of six equations in the six monomials x3

2, x
2
2, x2x3, x2, x3, 1:

A(x1) :=





d1 e1+c1x1 b1x1 a1x
2
1+g1 0 0

d2 e2+c2x1 b2x1 a2x
2
1+g2 0 0

d3 e3+c3x1 b3x1 a3x
2
1+g3 0 0

0 0 d1 b1x1 e1+c1x1 a1x
2
1+g1

0 0 d2 b2x1 e2+c2x1 a2x
2
1+g2

0 0 d3 b3x1 e3+c3x1 a3x
2
1+g3









x3
2

x2x3

x2
2

x2

x3

1




=





0
0
0
0
0
0




.

For this equation to have a solution, it is clear that the determinant
of the matrix A(x1) multiplying the entries x3

2, x2x3, x
2
2, x2, x3, 1 should

have zero determinant. Thus, the system of equations f1 = f2 = f3 = 0
is equivalent to detA(x1) = 0. In general, the degree of this polynomial
in x1 is high (generically, i.e., for almost all values of ai, . . . , gi, its degree
is six) and, furthermore, solutions need not be real. However, the degree
of the polynomial is an upper bound on the number of real solutions
and once a real number x1 has been found, one can read off the solution
for x2, x3 by scaling the element in the null space of A(x1) to have 1
as its last entry. If the null space of the matrix A(x1) has dimension
greater than one, corresponding to a multiplicity of roots for the poly-
nomial detA(x1) = 0, then there may be a multiplicity of solutions for
x2, x3 corresponding to the value(s) of x1 for which the null space of the
matrix A(x1) has dimension greater than 1. While the exact multiplic-
ity is a subtle question in [64], it is stated that an upper bound for the
multiplicity of the solutions x2, x3 associated with that value of x1 is the
dimension of the null space of A(x1).

2Independence is meant in a technical sense, over the ring of polynomials in x1.
3A monomial is a single polynomial; for example, x2x3 or x3

1.

109

A general procedure for six degree of freedom manipulators

To apply this procedure to the inverse kinematics of a six-link manip-
ulator, some preliminary work is necessary. The kinematics are given
by

gst(θ) = e
bξ1θ1 · · · ebξ6θ6gst(0)

and the inverse kinematics problem is to solve for θ1, . . . , θ6 given gd ∈
SE(3). We rewrite the kinematics in terms of the Denavit-Hartenberg
parameterization, as in equation (3.6):

gst(θ) = gl0l1(θ1)gl1l2(θ2) · · · gl5l6(θn)gl6t = gd.

By proper choice of link frames, each gli−1li has the form

gli−1,li =





cosφi − sinφi cosαi sinφi sinαi ai cosφi
sinφi cosφi cosαi − cosφi sinαi ai sinφi

0 sinαi cosαi di
0 0 0 1



 .

(3.42)
Given a desired gd for the end-effector position and orientation, we rewrite
this equation as

gl2l3(θ3)gl3l4(θ4)gl4l5(θ5) = g−1
l1l2

(θ2)g
−1
l0l1

(θ1) gd g
−1
l6t
g−1
l5l6

(θ6). (3.43)

What we have done is to take the inverses of gl5l6(θ6), gl0l1(θ1), and
gl1l2(θ2) and moved them to the right-hand side. The reason for this
clever rearrangement and the choice of the Denavit-Hartenberg parame-
terization in the kinematics will become clear in Step 1 of the procedure
which follows. By way of notation, we write gdg

−1
l6t

as

gdg
−1
l6t

=





lx mx nx qx
ly my ny qy
lz mz nz qz
0 0 0 1



 . (3.44)

Hence, l,m, n ∈ R3 are the columns of the rotational component of gdg
−1
l6t

and and q ∈ R3 is the translational component.
To bring to bear the machinery of algebraic geometry in an equation

involving sines and cosines of angles, we define ci := cos θi and si := sin θi
for i = 1, . . . , 6 and think of equation (3.43) as being polynomial in si
and ci. Indeed, by direct inspection we may see that the entries of each
exponential are unary (i.e., of degree 1 or less) in ci and si. Part of the
reason for rewriting the kinematics as in equation (3.43) is to be able to
reduce the order of the polynomial in si and ci. Both the left-hand side
and right-hand side of (3.43) are now cubic in si and ci. The details of
the procedure to eliminate all the variables except for θ3 is sketched as a

110

number of steps. The details of the proofs and justification of the steps
is quite involved and, for them, the reader is referred to the papers cited
above.

Step 1. Verify that the third and fourth columns of equation (3.43)
are independent of θ6. This is the step where the Denavit-Hartenberg
parameterization comes in handy. Indeed, from taking the inverse of the
formula for gl6t(θ6) from equation (3.42), it follows that

g−1
l6t

(θ6) =





cθ6 sθ6 0 a6

−cα6
sθ6 cα6

cθ6 sα6
−d6sα6

sα6
sθ6 −sα6

cθ6 cα6
−d6cα6

0 0 0 1



 .

Thus, the last two columns on the right-hand side of equation (3.43) are
independent of θ6.

Step 2. Equate the third and fourth column of the left-hand side and
right hand side of equation (3.43). This yields the following six equations
in θi, i = 1, . . . , 5:

EQ1 : c3f1 + s3f2 = c2h1 + s2h2 − a2

EQ2 : s3f1 − c3f2 = −λ2(s2h1 − c2h2) + µ2(h3 − d2)

EQ3 : f3 = µ2(s2h1 − c2h2) + λ2(h3 − d2)

EQ4 : c3r1 + s3r2 = c2n1 + s2n2

EQ5 : s3r1 − c3r3 = −λ2(s2n1 − c2n2) + µ2n3

EQ6 : r3 = µ3(s2n1 − c2n2) + λ2n3,

(3.45)

where

f1 =c4g1+s4g2+a3 f2 =µ3g3−λ3(s4g1−c4g2) f3 =µ3(s4g1−c4g2)+λ3g3+d3

r1 =c4m1+s4m2 r2 =µ3m3−λ3(s4m1−c4m2) r3 =µ3(s4m1−c4m2)+λ3m3

g1 =c5a5+a4 g2 =µ4d5−λ4s5a5 g3 =−s5µ4a5+λ4d5+d4

m1 =s5µ5 m2 =c5λ4µ5+µ4λ5 m3 =−c5µ4µ5+λ4λ5

h1 =c1p+s1q−a1 h2 =µ1(r−d1)−λ1(s1p−c1q) h3 =µ1(s1p−c1q)+λ1(r−d1)

n1 =c1u+s1v n2 =µ1w−λ1(s1u−c1v) n3 =µ1(s1u−c1v)+λ1w.

The scalars ai and di are the Denavit-Hartenberg parameters of the links,
and µi = sinαi, λi = cosαi. The desired configuration enters through
the following parameters:

p = −lxa6 − (mxµ6 + nxλ6)d6 + qx u = mxµ6 + nxλ6

q = −lya6 − (myµ6 + nyλ6)d6 + qy v = myµ6 + nyλ6

r = −lza6 − (mzµ6 + nzλ6)d6 + qz w = mzµ6 + nzλ6.

Recall that the l = (lx, ly, lz), m = (mx,my,mz), n = (nx, ny, nz), and
q = (qx, qy, qz) were defined in equation (3.44).

111

Step 3. Now, rearrange equations EQ1–EQ6, with the obvious definitions
for h, f, n, r ∈ R3 from the above definitions for their components, to get
two sets of three equations:

p =




c2 s2 0
−s2 c2 0
0 0 1



h =




1 0 0
0 −λ2 µ2

0 µ2 λ2








c3 s3 0
s3 −c3 0
0 0 1



 f +




a2

0
d2





l =




c2 s2 0
−s2 c2 0
0 0 1



n =




1 0 0
0 −λ2 µ2

0 µ2 λ2








c3 s3 0
s3 −c3 0
0 0 1



 r.

(3.46)
The left-hand sides of p and l are linear combinations of 1, c2, s2, c1,
s1, c1c2, s1c2, and s1s2. The right-hand sides are linear combinations in
functions of s3, c3 of 1, c5, s5, c4, s4, c4c5, s4c5, and s4s5.

Step 4. From a lengthy calculation, using the kinematics, it follows that

l p p · p p · l p× l (p · p)l − 2(p · l)p

have the same functional form as p and l in terms of their dependence
on linear combinations of the same variables as the left- and right-hand
sides of p and l. Between them, these represent 3+3+1+1+3+3 = 14
equations. Combine these 14 equations to get an equation of the form

P (s3, c3)





s4s5
s4c5
c4s5
c4c5
s4
c4
s5
c5
1



 = Q





s1s2
s1c2
c1s2
c1c2
s1
c1
s2
c2



 . (3.47)

In this equation, P (s3, c3) ∈ R14×9 is a function of s3, c3 and Q ∈ R14×8

is a constant matrix.

Step 5. If the rank of the matrix Q ∈ R14×8 is 8, use any 8 of the 14
equations in equation (3.47) to solve for the eight variables

s1s2 s1c2 c1s2 c1c2 s1 c1 s2 c2

in terms of the variables

s4s5 s4c5 c4s5 c4c5 s4 c4 s5 c5.

Use this in the remaining six equations of (3.47) to get six equations of
the form

Σ(c3, s3)





s4s5
s4c5
c4s5
c4c5
s4
c4
s5
c5
1



 = 0, (3.48)

112

where Σ(c3, s3) ∈ R6×9.
If the rank of Q is an integer k less than 8, then one can only solve

for k of the variables s1s2, s1c2, c1s2, s1, c1, s2, c2 and we are left with six
equations in 9 + 8 − k variables in place of (3.48). We will not describe
the algorithm in detail for this scenario, for details we refer the reader
to [64].

Step 6. We will assume that Q has rank 8, so that the equation of (3.48)
holds. To make the equations (3.48) polynomial rather than trigonomet-
ric, use the substitutions

si =
2xi

1 + x2
i

ci =
1− x2

i

1 + x2
i

for i = 3, 4, 5, where

xi = tan(
θi
2

).

Use this in equation (3.48) and multiply each equation by (1 + x2
4) and

(1+x2
5) to clear the denominators. Now, multiply the first four equations

by (1 + x2
3) to get

Σ1(x3)





x2
4x

2
5

x2
4x5

x2
4

x4x
2
5

x4x5

x2
5
x5
1




= 0. (3.49)

The first four equations of equation (3.49) are quadratic in x3 and the
last two are rational functions of x3, with denominators 1+x2

3. However,
the determinant of any 6× 6 submatrix of Σ is a polynomial in x3. (This
last fact needs proof.)

Step 7. We now use dialytic elimination to eliminate x4, x5 as in the
previous example by multiplying the six equations in equation (3.49) by
x4 and then appending them to the original set to get 12 equations of the
form

Σ̄ :=

[
Σ1(x3) 0

0 Σ1(x3)

]





x3
4x

2
5

x3
4x5

x3
4

x2
4x

2
5

x2
4x5

x2
4

x4x
2
5

x4x5
x4

x2
5
x5
1





= 0. (3.50)

The matrix Σ1(x3) is in R6×9 and the zero matrices are of dimension 6
× 3 so that the overall matrix on the left-hand side of equation (3.50) is
in R12×12.

113

Step 8. The polynomial equation det Σ̄ = 0 is a polynomial of order 16
in x3. Once we solve for x3, we solve for x4, x5 from the determination of
the null space of Σ̄ as in the Example 3.4. Then, we solve for θ1, θ2 from
equation (3.47). This yields the solutions to all the angles except θ6. For
this purpose, we return to the form of the kinematics

gst(θ) = e
bξ1θ1 · · · ebξ6θ6gst(0) = gd,

with all the variables known except θ6. By choosing any point p, we may
write this equation as

e
bξ6θ6p = e−

bξ5θ5 · · · e−bξ1θ1gdg
−1
st p =: q

Now we use Subproblem 1 from the preceding subsection to solve for θ6.

Number of inverse kinematics solutions

The set of steps outlined above results in a 16th order polynomial for x3

and hence θ3. This polynomial may or may not have 16 real roots. In the
instance of the elbow manipulator, we saw that the maximum number
of feasible solutions was eight. One may verify that if the three wrist
axes of the elbow manipulator do not intersect at a point, the number of
inverse kinematics solutions for this manipulator may be as high as 16.
Indeed, 16 is the upper bound of number of solutions of any open-link
spatial mechanism with six degrees of freedom. This number is a sharp
bound—that is to say, it is achievable (see, for example, [65])—and is far
superior to those obtained from a brute force elimination technique using
Bezout’s theorem. Indeed, this bound of 16 is a tribute to the ingenuity of
Lee and Liang [57] who were the first to notice the set of tricks presented
above and put to rest a number of erroneous conjectures that had been
populating the literature up to that point. Not the least of their tricks is
the rewriting of the kinematic equations as equation (3.43).

The algorithm as stated above has some drawbacks, as pointed out
by Manocha and Canny [64]. The majority of the drawbacks are numeri-
cal, owing to the computation of determinants of ill-conditioned matrices,
though there are some conceptual ones as well. For an example of a con-
ceptual drawback, we have the modification of the procedure in Step 5
above for choosing fewer than eight independent equations out of 14 to
eliminate as many of the cosines and sines of θ1, θ2 when the rank of the
matrix Q is less than 8 to produce an over determined set of equations.
The aforementioned paper shows that a general computational technique
of converting the dialytical elimination technique into a generalized eigen-
value problem can be brought to bear on the inverse kinematics problem
so as to improve its numerical conditioning and speed of computation.
These computational details are of tremendous importance when real-
time computation of the inverse kinematics solutions needs to be done in
the context of obstacle avoidance for robots in cluttered environments.

114

4 The Manipulator Jacobian

In addition to the relationship between the joint angles and the end-
effector configuration, one often makes use of the relationship between
the joint and end-effector velocities. In this section, we derive a formula
for this relationship and study its structure and properties. We also study
the dual relationship between end-effector wrenches and joint torques.

Traditionally, one describes the Jacobian for a manipulator by dif-
ferentiating the forward kinematics map. This works when the forward
kinematics is represented as a mapping g : Rn → Rp, in which case the
Jacobian is the linear map ∂g

∂θ (θ) : Rn → Rp. However, if we represent
the forward kinematics more completely as g : Rn → SE(3), the Jacobian
is not so easily obtained. The problem is that ∂g

∂θ (θ) is not a natural
quantity since g is a matrix-valued function. Of course, one could al-
ways choose coordinates for SE(3), but this description only holds locally.
More importantly, choosing a local parameterization for SE(3) destroys
the natural geometric structure of rigid body motion.

To correct this problem, we use the tools of Chapter 2 to write the
Jacobian of the forward kinematics map in terms of twists. We shall
see that the product of exponentials formula leads to a very natural and
explicit description of the manipulator Jacobian, which highlights the
geometry of the mechanism and has none of the drawbacks of a local
representation.

4.1 End-effector velocity

Let gst : Q → SE(3) be the forward kinematics map for a manipulator.
If the joints move along a path θ(t) ∈ Q, then the end-effector traverses
a path gst(θ(t)) ∈ SE(3). The instantaneous spatial velocity of the end-
effector is given by the twist

V̂ sst = ġst(θ)g
−1
st (θ).

Applying the chain rule,

V̂ sst =

n∑

i=1

(
∂gst
∂θi

θ̇i

)
g−1
st (θ) =

n∑

i=1

(
∂gst
∂θi

g−1
st (θ)

)
θ̇i, (3.51)

and we see that the end-effector velocity is linearly related to the velocity
of the individual joints. In twist coordinates, equation (3.51) can be
written as

V sst = Jsst(θ)θ̇,

where

Jsst(θ) =

[(
∂gst
∂θ1

g−1
st

)∨
· · ·

(
∂gst
∂θn

g−1
st

)∨]
. (3.52)

115

We call the matrix Jsst(θ) ∈ R6×n the spatial manipulator Jacobian. At
each configuration θ, it maps the joint velocity vector into the corre-
sponding velocity of the end-effector.

If we represent the forward kinematics using the product of exponen-
tials formula, we can obtain a more explicit and elegant formula for Jsst.
Let

gst(θ) = e
bξ1θ1 · · · ebξnθngst(0)

represent the mapping gst : Q→ SE(3), where ξ̂i ∈ se(3) are unit twists.
Then,
(
∂gst
∂θi

)
g−1
st = e

bξ1θ1 · · · ebξi−1θi−1
∂

∂θi

(
e

bξiθi

)
e

bξi+1θi+1 · · · ebξnθngst(0) g−1
st

= e
bξ1θ1 · · · ebξi−1θi−1

(
ξ̂i
)
e

bξiθi · · · ebξnθngst(0) g−1
st

= e
bξ1θ1 · · · ebξi−1θi−1

(
ξ̂i
)
e−

bξi−1θi−1 · · · e−bξ1θ1

and, converting to twist coordinates,

(
∂gst
∂θi

g−1
st

)∨
= Ad(

e
bξ1θ1 · · · ebξi−1θi−1

) ξi. (3.53)

The spatial manipulator Jacobian becomes

Jsst(θ) =
[
ξ1 ξ′2 · · · ξ′n

]

ξ′i = Ad(
e

bξ1θ1 · · · ebξi−1θi−1
) ξi

(3.54)

Jsst(θ) : Rn → R6 is a configuration-dependent matrix which maps joint
velocities to end-effector velocities.

Equation (3.54) shows that the manipulator Jacobian has a very spe-
cial structure. By virtue of the definition of ξ′, the ith column of the
Jacobian depends only on θ1, . . . , θi−1. In other words, the contribution
of the ith joint velocity to the end-effector velocity is independent of the
configuration of later joints in the chain. Furthermore, the ith column of
the Jacobian,

ξ′i = Ad(
e

bξ1θ1 · · · ebξi−1θi−1
) ξi,

corresponds to the ith joint twist, ξi, transformed by the rigid trans-
formation exp(ξ̂1θ1) · · · exp(ξ̂i−1θi−1). This is precisely the rigid body
transformation which takes the ith joint frame from its reference con-
figuration to the current configuration of the manipulator. Thus, the
ith column of the spatial Jacobian is the ith joint twist, transformed to
the current manipulator configuration. This powerful structural property
means that we can calculate Jsst(θ) “by inspection,” as we shall see shortly
in an example.

116

It is also possible to define a body manipulator Jacobian, Jbst, which is
defined by the relationship

V bst = Jbst(θ)θ̇.

A calculation similar to that performed previously yields

Jbst(θ) =
[
ξ†1 · · · ξ†n−1 ξ†n

]

ξ†i = Ad−1(
e

bξiθi · · · ebξnθngst(0)
) ξi

(3.55)

The columns of Jbst correspond to the joint twists written with respect
to the tool frame at the current configuration. Note that gst(0) appears
explicitly; choosing S such that gst(0) = I simplifies the calculation of Jbst.
The spatial and body Jacobians are related by an adjoint transformation:

Jsst(θ) = Adgst(θ)
Jbst(θ). (3.56)

The spatial and body manipulator Jacobians can be used to compute
the instantaneous velocity of a point attached to the end-effector. Let
qb represent a point attached to the end-effector, written in body (tool)
coordinates. The velocity of qb, also in body coordinates, is given by

vbq = V̂ bstq
b =

(
Jbst(θ)θ̇

)∧
qb.

Similarly, if we represent our point relative to the spatial (base) frame,
then

vsq = V̂ sstq
s =

(
Jsst(θ)θ̇

)∧
qs.

If we desire the velocity of the origin of the tool frame, then qb = 0 but
qs = gst(θ)q

b = p(θ), the position component of the forward kinematics
map. Thus, using homogeneous coordinates explicitly,

vsq =

[
ṗ(θ)
0

]
= RstV̂

b
st

[
0
1

]
= V̂ sst

[
p(θ)
1

]

are all equivalent expressions for the velocity of the origin of the tool
frame.

The relationship between joint velocity and end-effector velocity can
be used to move a robot manipulator from one end-effector configuration
to another without calculating the inverse kinematics for the manipulator.
If Jst is invertible, then we can write

θ̇(t) = (Jsst(θ))
−1V sst(t). (3.57)

117

S

T

θ4

l0

l1

θ3

l2
θ1

θ2

Figure 3.13: SCARA manipulator in non-reference configuration.

If V sst(t) is known, equation (3.57) is an ordinary differential equation for
θ. To move the end-effector between two configurations g1 and g2, we
pick any workspace path g(t) with g(0) = g1 and g(T) = g2, calculate

the spatial velocity V̂ s = ġg−1, and integrate equation (3.57) over the
interval [0, T].

Example 3.8. Jacobian for a SCARA robot
Consider the SCARA robot at an arbitrary configuration θ ∈ Q, as shown
in Figure 3.13. The spatial Jacobian can be evaluated by writing the
twists associated with each joint in its current configuration. For the
SCARA, the directions of the twists are fixed and only the points through
which the axes of the twists pass are functions of θ. By inspection,

q′1 =




0
0
0



 q′2 =




−l1 sin θ1
l1 cos θ1

0



 q′3 =




−l1 sin θ1 − l2 sin(θ1 + θ2)
l1 cos θ1 + l2 cos(θ1 + θ2)

0





are points on the axes. Calculating the associated twists yields

Jsst =





0 l1 cos θ1 l1 cos θ1 + l2 cos(θ1 + θ2) 0
0 l1 sin θ1 l1 sin θ1 + l2 sin(θ1 + θ2) 0
0 0 0 1
0 0 0 0
0 0 0 0
1 1 1 0




.

As a check, one can calculate the linear velocity of the end-effector using
the formula (Jsstθ̇)

∧p(θ) and verify that it agrees with ṗ(θ).

118

ξ1
ξ2

l0

q1

ξ4
ξ5

ξ6

ξ3

l1

S

qw

Figure 3.14: An idealized version of the Stanford arm.

Example 3.9. Jacobian for the Stanford arm
The Stanford arm, shown in Figure 3.14, is a six degree of freedom robot
with two revolute joints at the base, a prismatic joint, and a spherical
wrist. It is very similar to an elbow manipulator, with the “elbow” re-
placed by a prismatic joint.

The spatial manipulator Jacobian for the Stanford arm is computed by
determining the location and directions of the joint twists as a function
of the joint angles. For example, the first two joints pass through the
point q1 = q2 = (0, 0, l0) and point in the directions ω1 = (0, 0, 1) and
ω′

2 = (− cos θ1,− sin θ1, 0). This gives joint twists

ξ1 =

[
−ω1 × q1

ω1

]
=




0
0
0
0
0
1



 ξ′2 =

[
−ω′

2 × q1
ω′

2

]
=





l0 sin θ1
−l0 cos θ1

0
− cos θ1
− sin θ1

0



 .

The third joint is prismatic and hence we care only about its direction.
Taking into account the change in orientation due to the first two joints,
we have

ξ′3 =

[
ebzθ1e−bxθ2

[
0
1
0

]

0

]
=




− sin θ1 cos θ2
cos θ1 cos θ2

− sin θ2
0
0
0



 =

[
v′3
0

]
.

Finally, we compute the twists corresponding to the wrist. The wrist is
located at the point

q′w =




0
0
l0



+ ebzθ1e−bxθ2




0

l1 + θ3
0



 =




−(l1 + θ3) sin θ1 cos θ2
(l1 + θ3) cos θ1 cos θ2
l0 − (l1 + θ3) sin θ2



 .

119

The directions of the wrist axes depend on θ1 and θ2 as well as the
preceding wrist axes. These are given by

ω′
4 = ebzθ1e−bxθ2




0
0
1



 =




−s1s2
c1s2
c2





ω′
5 = ebzθ1e−bxθ2ebzθ4




−1
0
0



 =




−c1c4 + s1c2s4
−s1c4 − c1c2s4

s2s4





ω′
6 = ebzθ1e−bxθ2ebzθ4e−bxθ5




0
1
0



 =




−c5(s1c2c4 + c1s4) + s1s2s5
c5(c1c2c4 − s1s4)− c1s2s5

−s2c4c5 − c2s5



 .

Combining these directions with our calculations for q′w, we can now write
the complete manipulator Jacobian:

Jsst =

[
0 −ω′

2 × q1 v′3 −ω′
4 × q′w −ω′

5 × q′w −ω′
6 × q′w

ω1 ω′
2 0 ω′

4 ω′
5 ω′

6

]
,

(3.58)
where the various quantities are defined above.

Note that we were able to calculate the entire manipulator Jacobian
without explicitly differentiating the forward kinematics map.

As a final comment, we re-emphasize that the manipulator Jacobian
differs from the Jacobian of a mapping f : Rn → Rp. For instance,
in Example 3.8 (the SCARA manipulator), it is possible to define the
configuration of the end-effector as x = (p(θ), φ(θ)), where p(θ) is the
xyz position of the tool frame and φ(θ) = θ1 + θ2 + θ3 is the angle
of rotation of the tool frame about the z-axis. The kinematics is then
represented by the mapping x = f(θ) and by the chain rule

ẋ =
∂f

∂θ
θ̇.

The matrix ∂f
∂θ is the Jacobian of the mapping f : Q→ R4, but it is not

the manipulator Jacobian (body or spatial). In particular, the columns of
∂f
∂θ cannot be interpreted as the instantaneous twist axes corresponding
to each joint.

Similarly, for a general manipulator, one can choose a local parame-
terization for SE(3) and write the kinematics as f : Q→ R6. Once again,
the Jacobian of the mapping f : Q → R6 has no direct geometric inter-
pretation, even though it has the same dimensions as the manipulator
Jacobian. Furthermore, for manipulators which generate full rotation of
the end-effector, the parameterization of SE(3) by a vector of six numbers
introduces singularities which are solely an artifact of the parameteriza-
tion. These singularities may lead to false conclusions about the ability

120

of the manipulator to reach certain configurations or achieve certain ve-
locities. The use of the manipulator Jacobian, as we have defined it here,
avoids these difficulties.

4.2 End-effector forces

The manipulator Jacobian can also be used to describe the relationship
between wrenches applied at the end-effector and joint torques. This
relationship is fundamental in understanding how to program robots to
interact with their environment by application of forces. We shall see
that the duality of wrenches and twists discussed in Chapter 2 extends
to manipulator kinematics.

To derive the relationship between wrenches and torques, we calculate
the work associated with applying a wrench through a displacement of the
end-effector. If we let gst(θ(t)) represent the motion of the end-effector,
the net work performed by applying a (body) wrench Ft over an interval
of time [t1, t2] is

W =

∫ t2

t1

V bst · Ft dt,

where V bst is the body velocity of the end-effector. The work will be the
same as that performed by the joints (assuming no friction), and hence

∫ t2

t1

θ̇ · τ dt = W =

∫ t2

t1

V bst · Ft dt.

Since this relationship must hold for any choice of time interval, the
integrands must be equal. Using the manipulator Jacobian to relate V bst
to θ̇, we have

θ̇T τ = θ̇T (Jbst)
TFt.

It follows that since θ̇ is free,

τ = (Jbst)
TFt. (3.59)

This equation relates the end-effector wrench to the joint torques by
giving the torques that are equivalent to a (body) wrench applied at the
end-effector.

A similar analysis can be used to derive the relationship between a
spatial wrench Fs applied at the end-effector and the corresponding joint
torques:

τ = (Jsst)
TFs. (3.60)

The full derivation of this equation is left as an exercise.
The interpretation of the Jacobian transpose as a mapping from end-

effector forces to joint torques must be made carefully. If the Jacobian
is square and full rank, there are no difficulties. However, in all other

121

cases, the relationship can be misleading. We defer the discussion of
singularities to the next section, and consider only the case when Jst is
not square.

The formulas given by equations (3.59) and (3.60) describe the force
relationship that must hold between the end-effector forces and joint
torques. We can use these equations to ask two separate questions:

1. If we apply an end-effector force, what joint torques are required to
resist that force?

2. If we apply a set of joint torques, what is the resulting end-effector
wrench (assuming that the wrench is resisted by some external
agent)?

Equation (3.59) answers the first question in all cases. However, in ma-
nipulation tasks, we are often more interested in answering the second
question, which can be recast as: what joint torques must be applied to
generate a given end-effector wrench?

If the number of joints is larger than the dimension of the workspace,
then we say the manipulator is kinematically redundant. In this case,
we can generically find a vector of joint torques which generates the ap-
propriate end-effector force, as given by equation (3.59). However, since
there are more joints than the minimum number required, internal mo-
tions may exist which allow the manipulator to move while keeping the
position of the end-effector fixed. Redundant manipulators are discussed
in more detail in Section 5.

If, on the other hand, the number of joints is smaller than the di-
mension of the workspace, then there may be no torque which satisfies
equation (3.59) for arbitrary end-effector wrenches, and therefore some
end-effector wrenches cannot be applied. They can, however, be resisted
by the manipulator. This is a consequence of our assumption that the
allowable motion of the manipulator is completely parameterized by the
joint angles θ. If a wrench causes no joint torques, it must be resisted by
structural forces generated by the mechanism. Such a situation occurs
when F lies in the null space of JTst. In this case, the force balance equa-
tion is satisfied with τ = 0; the resisting forces are supplied completely
by the robot’s mechanical structure.

Example 3.10. End-effector forces for a SCARA robot
Consider again the SCARA robot from the Example 3.8. The transpose
of the spatial manipulator Jacobian is

(Jsst)
T =





0 0 0 0 0 1
l1c1 l1s1 0 0 0 1

l1c1 + l2c12 l1s1 + l2s12 0 0 0 1
0 0 1 0 0 0



 .

122

T
FN1

FN2

θ4

θ3

θ2

θ1

S

Figure 3.15: End-effector wrenches which generate no joint torques.

The null space of this matrix is spanned by

FN1
=




0
0
0
1
0
0



 FN2
=




0
0
0
0
1
0



 ;

hence, workspace torques about the x- and y-axes of the manipulator
cannot be applied by the manipulator. For example, twisting the manip-
ulator as shown in Figure 3.15 generates no joint torques and no motion
of the manipulator.

4.3 Singularities

At a given configuration, the manipulator Jacobian describes the rela-
tionship between the instantaneous velocity of the end-effector and the
joint velocities:

V sbt = Jsbt(θ)θ̇.

A singular configuration of a robot manipulator is a configuration at
which the manipulator Jacobian drops rank. For a six degree of freedom
manipulator in SE(3), the Jacobian fails to be invertible at singular points
and hence the manipulator is not able to achieve instantaneous motion
in certain directions. Near singular configurations, the size of the joint
velocities required to maintain a desired end-effector velocity in certain
directions can be extremely large.

If a manipulator has fewer than six degrees of freedom, a singular con-
figuration corresponds to a configuration in which the number of degrees
of freedom of the end-effector drops. This is again characterized by the
manipulator Jacobian dropping rank, i.e., two or more of the columns
of Jsst(θ) ∈ R6×n become linearly dependent. Since most manipulators

123

are designed for tasks in which all of the degrees of freedom are needed,
singular configurations should usually be avoided, if possible.

Singularities also affect the size of the end-effector forces that the
manipulator can apply. At a singular configuration, some end-effector
wrenches will lie in the null space of the Jacobian transpose. These
wrenches can be balanced without applying any joint torques, as the
mechanism will generate the opposing wrenches. On the other hand,
applying an end-effector wrench in a singular direction is not possible.
Such a wrench could be balanced by any wrench in the singular direction,
and hence it can be balanced by the zero wrench. If no other external
forces are present, no forces will be generated.

In order to avoid these difficulties, it is necessary to identify singular
configurations of a manipulator. We concentrate on classifying several
common singularities for six degree of freedom manipulators and show
how these can be determined by analyzing the geometry of the system.
The cases presented here can be extended to consider more general open-
chain manipulators. For each of the geometric conditions given below,
we give a sketch of the proof of singularity. To illustrate some of the
different ways in which singularities can be analyzed, we use a different
proof technique for each example.

Example 3.11. Two collinear revolute joints
The Jacobian for a six degree of freedom manipulator is singular if there
exist two revolute joints with twists

ξ1 =

[
−ω1 × q1

ω1

]
ξ2 =

[
−ω2 × q2

ω2

]

which satisfy the following conditions:

1. The axes are parallel: ω1 = ±ω2.

2. The axes are collinear: ωi × (q1 − q2) = 0, i = 1, 2.

Proof. In analyzing the singularity of a matrix, we are permitted to pre-
or post-multiply the matrix by a nonsingular matrix of the proper dimen-
sions. Pre-multiplication by a nonsingular matrix can be used to add one
row to another or switch two rows, while post-multiplication can be used
to perform the same operations on columns.

Assume, without loss of generality, that the columns of the Jacobian
which are linearly dependent are the first two columns of J . The Jacobian
has the form

J(θ) =

[
−ω1 × q1 −ω2 × q2 · · ·

ω1 ω2 · · ·

]
∈ R6×6

124

and we can assume ω1 = ω2 by negating the second column if necessary.
Subtracting column 1 from column 2 yields

J(θ) ∼
[
−ω1 × q1 −ω2 × (q2 − q1) · · ·

ω1 0 · · ·

]
,

where the symbol ∼ denotes equivalence of two matrices (up to elemen-
tary column operations). Using condition 2, the second column is zero,
so that J(θ) is singular.

This type of singularity is common in spherical wrist assemblies that
are composed of three mutually orthogonal revolute joints whose axes
intersect at a point. By rotating the second joint in the wrist, it is
possible to align the first and third axes and the manipulator Jacobian
becomes singular. In this configuration, rotation about the axis normal
to the plane defined by the first and second joints is not possible.

Example 3.12. Three parallel coplanar revolute joint axes
The Jacobian for a six degree of freedom manipulator is singular if there
exist three revolute joints which satisfy the following conditions:

1. The axes are parallel: ωi = ±ωj for i, j = 1, 2, 3.

2. The axes are coplanar: there exists a plane with unit normal n such
that nTωi = 0 and

nT (qi − qj) = 0, i, j = 1, 2, 3.

Proof. Another type of transformation which can be used in analyzing
singularities is to change the frame of reference used to express the twists
that form the columns of the Jacobian. A change of coordinates affects
twists (and hence the Jacobian) by pre-multiplying by the adjoint matrix
corresponding to the change of basis. Since the adjoint is an invertible
transformation (Ad−1

g = Adg−1), this does not affect the singularity of
the matrix.

After an initial column permutation, assume J(θ) has the form

J(θ) =

[
−ω1 × q1 −ω2 × q2 −ω3 × q3 · · ·

ω1 ω2 ω3 · · ·

]
.

Attach a coordinate frame to the point q1 with the z-axis of the frame
pointing in the direction of ω1 (see Figure 3.16). Further, choose the
frame such that the plane formed by the axes is the yz plane in the new
coordinates. Thus, each axis has a point of intersection which lies on the
y-axis. Call these points y1(= 0), y2, and y3. Now, with respect to this

125

q1

ξ3

q2

ξ2

ξ1

x

y

q3

z

y2

y3

Figure 3.16: Three coplanar, parallel, revolute twists.

frame, the Jacobian has the form

Adg J(θ) =





0 ±y2 ±y3
0 0 0 · · ·
0 0 0
0 0 0
0 0 0 · · ·
1 ±1 ±1




.

The first three columns are clearly linearly dependent.

The elbow manipulator exhibits this singularity in its reference con-
figuration (see Figure 3.11).

Example 3.13. Four intersecting revolute joint axes
The Jacobian for a six degree of freedom manipulator is singular if there
exist four revolute joint axes that intersect at a point q:

ωi × (qi − q) = 0, i = 1, . . . , 4.

Proof. This example is trivial if we choose a frame whose origin is at the
common point of intersection of the four revolute twists. However, we can
also show singularity by making use of reciprocal screw systems. Recall
from Section 5.3 of Chapter 2 that a wrench is reciprocal to a twist when
the inner product between the wrench and the twist is zero (indicating
that no work is done by applying the wrench and moving along the twist).
Since we are in a 6-dimensional space, if we can show that the dimension
of the reciprocal system is sufficiently large (three for this example), then
we can show singularity of the system of twists. This technique works
well when there are a large number of twists and hence the size of the
reciprocal system is small.

For this example, we make use of the following fact: every revolute
twist is reciprocal to a pure force, in any direction, applied to a point on

126

the axis of the revolute twist. To see this, it suffices to consider a twist
and wrench through the origin:

V =

[
0
ω

]
F =

[
f
0

]
=⇒ V TF = 0.

It is left to the reader to verify that this case generalizes appropriately.
We can now use this fact to construct the reciprocal system for the

four twists which intersect at a point. Since any pure force through this
point corresponds to a reciprocal wrench, it follows that the dimension of
the reciprocal system is three and hence the four twists must be singular.

This type of singularity occurs in the inverse elbow manipulator (see
Exercise 4) when the final joint axis intersects the shoulder adding a
fourth axis as shown.

The singularities given here and in the exercises are by no means
exhaustive. However, they do occur frequently and are often easy to de-
termine just by examining the geometry of the manipulator. It is also
possible for a manipulator to exhibit different types of singularities at a
single configuration. In this case, depending on the number and type of
the singularities, the manipulator may lose the ability to move in several
different directions at once. For example, if the arm of the elbow manip-
ulator shown in Figure 3.4 is held vertically over the base, it exhibits all
three of the singularities we have just illustrated. However, it still has
four degrees of freedom (instead of three) since two of the singularities
restrict motion in the same direction.

In addition to singularities of the manipulator Jacobian, a robot can
also lose degrees of freedom when the joint variables are constrained to
lie in a closed interval. In this case, a loss of freedom of motion can occur
when one or more of the joints is at the limit of its travel. At such a
configuration, motion past the joint limit is not allowed and the motion
of the end-effector is restricted.

4.4 Manipulability

As we saw in the previous section, when a manipulator is at a singular
configuration there are directions of movement which require high joint
rates and forces. Near a singularity, movement may also be difficult in
certain directions. The manipulability of a robot describes its ability to
move freely in all directions in the workspace.

Manipulability measures can be divided into two rough classes:

1. The ability to reach a certain position or set of positions

2. The ability to change the position or orientation at a given config-
uration

127

The first of these measures is directly related to the workspace of a ma-
nipulator. Depending on the task, we may want to use the complete,
reachable, or dextrous workspaces to characterize the manipulability of
a manipulator. The second class of measures concerns the manipulabil-
ity of a manipulator around a given configuration; that is, it is a local
property.

To study local manipulability, we examine the Jacobian of the manip-
ulator, which relates infinitesimal joint motions to infinitesimal workspace
motions. Throughout this section we write J for the manipulator Jaco-
bian Jst. Either the spatial or body Jacobian can be used, but the body
Jacobian is preferred since the body velocity of the end-effector is inde-
pendent of the choice of base frame.

There are many different local manipulability measures that have been
proposed in the literature and which are useful in different situations. We
present a small sample of some of the more common measures here. Many
of these measures rely on the singular values of J . Recall that for a matrix
A ∈ Rp×n, the singular values of A are the square roots of the eigenvalues
of ATA. We write σ(A) for the set of singular values of A and λ(A) to
denote the set of eigenvalues of A. The maximum singular value of a
matrix is equal to the induced two-norm of the matrix:

σmax(A) = max
‖x‖2=1

‖Ax‖2 = ‖A‖2.

If a matrix is singular, then at least one of its singular values is zero.

Example 3.14. Minimum singular value of J

µ1(θ) = σmin(J(θ))

The minimum singular value of the Jacobian corresponds to the minimum
workspace velocity that can be produced by a unit joint velocity vector.
The corresponding eigenvector gives the direction (twist) in which the
motion of the end-effector is most limited. At a singular configuration,
the minimum singular value of J is zero.

Example 3.15. Inverse of the condition number of J

µ2(θ) =
σmin(J(θ))

σmax(J(θ))

The condition number of a matrix A is defined as the ratio of the max-
imum singular value of A to the minimum singular value of A. For the
Jacobian, the inverse condition number gives a measure of the sensitivity
of the magnitude of the end-effector velocity V to the direction of the
joint velocity vector θ̇. It provides a normalized measure of the minimum
singular value of J . At a singular configuration, the inverse condition
number is zero.

128

Example 3.16. Determinant of J

µ3(θ) = detJ(θ)

The determinant of the Jacobian measures the volume of the velocity
ellipsoid (in the workspace) generated by unit joint velocity vectors. It
is important to note that µ3(θ) does not contain information about the
condition number of J . In particular, since detJ(θ) is the product of
the singular values of J(θ), it can be large even if σmin(J(θ)) is small, by
having a large σmax(J(θ)).

These manipulability measures can be used to provide an alternate
definition for the dextrous workspace of a manipulator. For any of the
measures given above, define the set W ′

D as

W ′
D = {gst(θ) : θ ∈ Q,µi(θ) 6= 0} ⊂ SE(3). (3.61)

W ′
D is the set of end-effector configurations for which the manipulator can

move infinitesimally in any direction. Note that W ′
D is a subset of SE(3),

unlike our previous definition (in equation (3.13)) which consisted of the
subset of R3 at which the manipulator could achieve any orientation.

Additional manipulability measures are given in the exercises.

5 Redundant and Parallel Manipulators

In this section, we briefly consider some other kinematic mechanisms that
occur frequently in robotic manipulation. We focus on two particular
types of structures—redundant manipulators and parallel manipulators—
and indicate how to extend some of the results of this chapter to cover
these cases.

5.1 Redundant manipulators

In order to perform a given task, a robot must have enough degrees of
freedom to accomplish that task. In the analysis presented so far, we have
concentrated on the case in which the robot has precisely the required
degrees of freedom. A kinematically redundant manipulator has more
than the minimal number of degrees of freedom required to complete a
set of tasks.

A redundant manipulator can have an infinite number of joint config-
urations which give the same end-effector configuration. The extra de-
grees of freedom present in redundant manipulators can be used to avoid
obstacles and kinematic singularities or to optimize the motion of the
manipulator relative to a cost function. Additionally, if joint limits are
present, redundant manipulators can be used to increase the workspace
of the manipulator.

129

The derivation of the forward kinematics of a redundant manipulator
is no different from the derivation presented in Section 2. Using the
product of exponentials formula,

gst(θ) = e
bξ1θ1 · · · ebξnθngst(0),

where n is greater than p, the dimension of the workspace (p = 3 for
planar manipulators and p = 6 for spatial manipulators). The Jacobian
of a redundant manipulator has the form

Jsst(θ) =
[
ξ1 ξ′2 · · · ξ′n

]
,

where ξ′i is the twist corresponding to the ith joint axis in the current
configuration. Jsst ∈ Rp×n has more columns than rows.

The inverse kinematics problem for a redundant manipulator is ill-
posed: there may exist infinitely many configurations of the robot which
give the desired end-effector configuration. In fact, if we keep the end-
effector configuration fixed, the robot is still free to move along any tra-
jectory which satisfies

gst(θ(t)) = gd, (3.62)

where gd ∈ SE(3) is the desired configuration of the end-effector. The set
of all θ which satisfy this equation is called the self-motion manifold for
the configuration gd. Differentiating equation (3.62), we obtain

Jsst(θ(t))θ̇ = (ġstg
−1
st)∨ = 0.

Thus, the motions which are allowed must have joint velocities which
lie in the null space of the manipulator Jacobian. A motion along the
self-motion manifold is called an internal motion.

More generally, given an end-effector path g(t), we would like to find a
corresponding joint trajectory θ(t). Since there may be an infinite number
of joint trajectories which give the requisite end-effector path, additional
criteria are used to choose among them. One common solution is to
choose the minimum joint velocity which gives the desired workspace
velocity. This is achieved by choosing

θ̇ = J†
st(θ)Vst,

where J† = JT (JJT)−1 is the Moore-Penrose generalized inverse of J .
The properties of this and other kinematic redundancy resolution algo-
rithms are discussed briefly in Chapter 7.

The manipulator Jacobian can also be used to relate joint torques
to end-effector wrenches for redundant manipulators. Since the links of
the manipulator are free to move even when the end-effector is fixed, a
thorough understanding of the relationship between joint forces and end-
effector wrenches requires a study of the dynamics of the manipulator.

130

θ1

(x, y)

θ3 θ2

VN

θ1

θ2

θ3

(a) (b)

Figure 3.17: Self-motion manifold for a redundant planar manipulator.

In particular, the possible existence of internal motions, combined with
the inertial coupling between the links, can cause forces to be applied to
the end-effector even if no joint torques are applied. We defer a com-
plete discussion of this situation until Chapter 6, in which we study the
dynamics of constrained systems in full detail. Using the results of that
chapter, it will be possible to show that when a manipulator is in static
equilibrium, the previous relationship,

τ = JTstF, (3.63)

still holds. This relationship gives the joint torques necessary to produce a
given end-effector wrench when the system is stationary. Either the body
or spatial Jacobian can be used, as long as the wrench F is represented
appropriately.

Example 3.17. Self-motion manifold for a planar manipulator
Consider the planar manipulator shown in Figure 3.17a. Holding the po-
sition of the end-effector fixed, the system obeys the following kinematic
constraints:

l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3) = x

l1 sin θ1 + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3) = y.

This is a set of two equations in three variables and hence there exist
multiple solutions. A self-motion manifold for this manipulator is shown
in Figure 3.17b.

The Jacobian for the mapping p : θ 7→ (x, y) is

∂p

∂θ
=

[
−l1s1 − l2s12 − l3s123 −l2s12 − l3s123 −l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

]
, (3.64)

131

Figure 3.18: A parallel manipulator consisting of three series chains con-
nected to a single end-effector.

where sijk = sin(θi + θj + θk) and similarly for cijk. The Jacobian has a
null space spanned by the vector

VN =




l2l3 sin θ3

−l2l3 sin θ3 − l1l3 sin(θ2 + θ3)
l1l2 sin θ2 + l1l3 sin(θ2 + θ3)



 .

Any velocity θ̇ = αVN is tangent to the self-motion manifold and main-
tains the position of the end-effector. One such velocity is shown as an
arrow on Figure 3.17b.

5.2 Parallel manipulators

A parallel manipulator is one in which two or more series chains con-
nect the end-effector to the base of the robot. An example is shown in
Figure 3.18. Parallel manipulators can offer advantages over open-chain
manipulators in terms of rigidity of the mechanism and placement of the
actuators. For example, the manipulator in Figure 3.18 can be completely
actuated by controlling only the first link in each chain, eliminating the
need to place motors at the distal links of the manipulator. Parallel ma-
nipulators are also called closed-chain manipulators, since they contain
one or more closed kinematic chains.

Structure equation for a parallel mechanism

The forward kinematics for a parallel manipulator are described by equat-
ing the end-effector location specified by each chain. Suppose we have a
manipulator with n1 joints in the first chain (including the end-effector)
and n2 joints in the second chain (including the end-effector). Then, the
forward kinematics is described in exponential coordinates as

gst = e
bξ11θ11 · · · ebξ1n1θ1n1 gst(0) = e

bξ21θ21 · · · ebξ2n2θ2n2 gst(0), (3.65)

132

where all quantities are specified relative to a single base and tool frame.
Equation (3.65) is called the structure equation (or loop equation) for the
manipulator and introduces constraints between the possible joint angles
of the manipulator. It is because of these constraints that we can control
the end-effector location by specifying only a subset of the joint variables:
the other joint variables must take on values such that equation (3.65) is
satisfied.

Since the joint variables are constrained by equation (3.65), the joint
space for a parallel manipulator is not simply the Cartesian product of
the individual joint spaces, as in the open-chain case. Rather, it is the
subset Q′ ⊂ Q which also satisfies equation (3.65). Determining the
dimension of Q′, and hence the number of degrees of freedom for the
parallel manipulator, requires careful inspection of the number of joints
and links in the mechanism.

LetN be the number of links in the mechanism, g the number of joints,
and fi the number of degrees of freedom for the ith joint. The number of
degrees of freedom can be obtained by taking the total degrees of freedom
for all of the links and subtracting the number of constraints imposed by
the joints attached to the links. If all of the joints define independent
constraints, the number of degrees of freedom for the mechanism is

F = 6N −
g∑

i=1

(6− fi) = 6(N − g) +

g∑

i=1

fi. (3.66)

Equation (3.66) is called Gruebler’s formula. Gruebler’s formula only
holds when the constraints imposed by the joints are independent. For
planar motions, Gruebler’s formula holds with 6 replaced by 3.

Although the forward kinematics of a parallel manipulator is compli-
cated by the closed loop nature of the mechanism, the inverse problem
is no more difficult than in the open-chain case. Namely, the inverse
kinematics problem for a parallel manipulator is solved by considering
the inverse problem for each open-chain mechanism which connects the
ground to the end-effector. This can be done using the methods presented
in Section 3.

Velocity and force relationships

The velocity of the end-effector of a parallel manipulator is related to the
velocity of the joints of the manipulator by differentiating the structure
equation (3.65). This gives a Jacobian matrix for each chain:

V sst = Js1




θ̇11
...

θ̇1n1



 = Js2




θ̇21
...

θ̇2n2



 , (3.67)

133

where

Js1 =
[
ξ11 ξ′12 · · · ξ′1n1

]
Js2 =

[
ξ21 ξ′22 · · · ξ′2n2

]
.

Since the mechanism contains closed kinematic chains, not all joint ve-
locities can be specified independently.

The manipulator Jacobian can be written in more conventional form
by stacking the Jacobians for each chain:

[
Js1 0
0 Js2

]
θ̇ =

[
I
I

]
V sst. (3.68)

This equation has a form very similar to one which we shall use in Chap-
ter 5 to describe the kinematics of a multifingered grasp. Indeed, if we
view each of the chains as grasping the end-effector link via a prismatic
or revolute joint, then a parallel manipulator is very similar to a multi-
fingered hand grasping an object.

The relationship between joint torques and end-effector forces for a
parallel manipulator is more complicated than for an open-chain manip-
ulator. The basic problem is that two or more chains can fight against
each other and apply forces which cause no net end-effector wrench. A
set of joint torques which causes no net end-effector wrench is called an
internal force. We defer a discussion of internal forces until Chapter 5,
where they arise naturally in the context of grasping.

Singularities

Determining the singularities of parallel mechanisms is more involved
than it is for serial mechanisms. Consider a general parallel mechanism
with k chains and let Θi denote the joint variables in the ith chain. The
Jacobian of the structure equations has the form

V sst = J1(Θ1)Θ̇1 = · · · = Jk(Θk)Θ̇k. (3.69)

We say that an end-effector velocity is admissible at a configuration Θ =
(Θ1, . . . ,Θk) if there exist Θ̇i which satisfy equation (3.69). The set of
admissible velocities forms a linear space, since it is the intersection of
the range spaces of Ji(θ), i = 1, . . . , k. Hence, we can define the rank of
the structure equations, ρ, at a configuration Θ as the dimension of the
space of admissible velocities,

ρ = dim
k⋂

i=1

R(Ji(θ)), (3.70)

where R(A) denotes the range space of the matrix A.
A parallel mechanism is kinematically singular at a point if the rank

of the structure equations drops at that point. In this case, the tool loses

134

θ11

r r

l1

coupler

h

l2

T output link

S

(a) Reference configuration (b) Angle description

θ21

θ12

θ22

input
link

Figure 3.19: Four-bar linkage.

the ability to move instantaneously in some direction. This is analogous
to our description of singularities in serial mechanisms. However, at
this point we have not yet identified which joints in the mechanism are
actuated and which are passive. If a parallel mechanism is fully actuated,
then these are the only types of singularities that can occur. However,
in most instances, only some of the joints of a parallel manipulator are
actuated and this can lead to additional singularities. We call this second
type of singularity an actuator singularity and give an example of it when
we study the Stewart platform in Section 5.4.

5.3 Four-bar linkage

To illustrate some of the concepts introduced above, we consider the
four-bar linkage shown in Figure 3.19. The mechanism consists of three
rigid bodies connected together by revolute joints. The links attached to
the ground frame are called the input and output links, the rigid body
which connects the input and output links is called the coupler. It is
called a four-bar mechanism even though there are only three links, since
historically the ground frame is considered to be the fourth link.

Four-bar linkages are usually studied in the context of mechanism
synthesis. For example, we might try to find a mechanism such that the
input and output links satisfy a given functional relationship, creating
a type of mechanical computer. Alternatively, one might wish to design
the mechanism so that a point on the coupler traces a specified path or
passes through a set of points. Many other variations exist, but for all
of these problems one tries to choose the kinematic parameters which
describe the mechanism—the lengths of the links, shape of the coupler,
location of the joints—so that a given task is performed. In this section,
we bypass the synthesis problem and concentrate on kinematic analysis
of a given mechanism.

135

The number of degrees of freedom of a four-bar mechanism is given
by Gruebler’s formula:

N = 3 links

g = 4 joints

fi = 1 DOF/link

=⇒ F = 3(3− 4) + 4 = 1.

The fact that there is only one degree of freedom helps explain the ter-
minology of the input and output links. Note that we used the planar
version of Gruebler’s formula to calculate the mobility of the mechanism.
A quick calculation shows that the spatial version of the formula gives
F = 6(3 − 4) + 4 = −2 (!). We leave the resolution of this apparent
paradox as an exercise.

To write the structure equations, we must first assign base and tool
frames and choose a reference configuration. The tool and base frames
are assigned as shown in the figure. We choose the reference configura-
tion (θ = 0) to be the configuration shown in Figure 3.19a. Note that
this is not the usual reference configuration if we had considered each of
the kinematic chains as independent two-link robots. However, it will be
convenient to have the reference configuration satisfy the kinematic con-
straints and hence we define the angles as shown in Figure 3.19b. With
respect to this configuration, the structure equations have the form

gst = e
bξ11θ11e

bξ12θ12gst(0) = e
bξ21θ21e

bξ22θ22gst(0).

Note that in the plane this gives three constraints in terms of four vari-
ables, leaving one degree of freedom as expected.

The twists can be calculated using the formulas for twists in the plane
derived in the exercises at the end of Chapter 2. In particular, a revolute
joint in the plane through a point q = (qx, qy) is described by a planar
twist

ξ =




qy
−qx
1



 ∈ R3.

This yields

ξ11 =




0
r
1



 ξ12 =




l1
r
1



 ξ21 =




h
−r
1



 ξ22 =




h+ l2
−r
1





gst(0) =

[
I
[

0
h+l2

]

0 1

]
.

Expanding the product of exponentials formula gives

−r − l1 sin θ11 + r cos(θ11 + θ12) = x = r − l2 sin θ21 − r cos(θ21 + θ22)

l1 cos θ11 + r sin(θ11 + θ12) = y = h+ l2 cos θ21 − r sin(θ21 + θ22)

θ11 + θ12 =φ = θ21 + θ22

136

where φ is the angle the tool frame makes with the horizontal. From the
form of this equation, it is clear that solving for the forward kinematics
is a complicated task, though it turns out that in many cases it can be
done in closed form.

The Jacobian of the structure equation has the form

V sst =
[
ξ11 ξ′12

] [θ̇11
θ̇12

]
=
[
ξ21 ξ′22

] [θ̇21
θ̇22

]
.

To calculate the individual columns of the Jacobian, we write the twists
at the current configuration of the manipulator. Thus,

V sst =




0 l1 cos θ11
r r + l1 sin θ11
1 1




[
θ̇11
θ̇12

]
=




h h+ l2 cos θ21
−r −r + l2 sin θ21
1 1




[
θ̇21
θ̇22

]
.

This gives the velocity constraints on the system. Since the individual
Jacobians for each chain only have two columns, it is clear that the dimen-
sion of the space of admissible velocities is at most two. To examine the
mobility more closely, we rearrange the Jacobian to isolate the actuated
and passive joints.

Suppose we take θ = θ11 as the actuated joint and let α=(θ12, θ21, θ22)
represent the passive joints. The Jacobian of the structure equation can
be rearranged as

ξ11θ̇ =
[
−ξ′12 ξ21 ξ′22

]
α̇ (3.71)

(this type of rearrangement works only in the special case where we have
two serial chains or a single kinematic loop). The form of this equation
suggests that if we specify the velocity of the actuated joint θ, then we
can solve for the velocity of the passive joints if the right-hand side of
equation (3.71) is nonsingular.

The right-hand side of equation (3.71) corresponds to the twists gen-
erated by three parallel, revolute joints. We know from our study of
singularities of twists that if the three axes are coplanar in addition to
being parallel, then the twists are linearly dependent. In the planar case,
this means that if the passive joints are collinear, then the right-hand
side of equation (3.71) loses rank and the mechanism may not be able to
move. However, this condition is not sufficient since it may happen that
ξ11 is in the range of {ξ′12, ξ21, ξ′22} even though they are singular. These
two different situations are shown in Figure 3.20. Note that switching
the role of the input and output links changes the singular configurations
of the mechanism. For example, the singularity shown in Figure 3.20a is
only a singularity if the left-hand link is chosen as the input link (since
this choice gives three collinear passive joints).

The configuration shown in Figure 3.20b is known as an uncertainty
configuration in the kinematics literature. In this case, it is actually

137

(b) Uncertainty configuration(a) Singular configuration

active joint

Figure 3.20: Potential singular configurations for four-bar mechanisms.

possible for the mechanism to move instantaneously in two independent
directions. Examining the structure equations, we see that




0 0
r r − l1
1 1




[
θ̇11
θ̇12

]
=




0 0
−r −r + l1
1 1




[
θ̇21
θ̇22

]

and hence

θ̇N1
=





1
−1
−1
1



 and θ̇N2
=





r − l1
−r
r − l1
−r





represent two independent, instantaneously admissible velocities. These
two independent velocities exist only if the mechanism is perfectly aligned
and hence uncertainty configurations rarely occur in practice.

5.4 Stewart platform

Another common example of a parallel mechanism is the Stewart plat-
form, an example of which is shown in Figure 3.21. The mechanism
consists of two rigid bodies, connected by a set of prismatic joints. Each
prismatic joint is connected to the rigid body by a spherical joint, allowing
complete rotational motion. Only the prismatic joints are actuated.

Stewart platforms are commonly used in aircraft flight simulators to
move an aircraft cockpit along the motion indicated by the (simulated)
dynamics of the system. Although the concept of a Stewart platform is
quite old (it was studied by Stewart in the 1950s [111]), it is only recently
that the kinematics for a general Stewart platform have been solved in
complete generality.

In order to write the structure equation for a Stewart platform, we
must first take a slight detour and discuss the modeling of a spherical
joint. For the manipulators we have considered previously, we have al-
ways modeled a spherical joint as three revolute joints intersecting at a

138

Figure 3.21: A Stewart platform with a PUMA robot attached. (Photo
courtesy of Steve Dubowsky, MIT)

point. This made physical sense since this is how most actuated spher-
ical wrists are built. However, spherical wrists always have singularities
when any two of the axes become parallel (it can be shown that this will
always happen for some choice of joint angles). In a Stewart platform,
the spherical joints are completely passive and hence will never become
singular. This requires that we define spherical joints slightly differently
than spherical wrists.

The rigid motion generated by a spherical joint has the form

g(R) =

[
R (I −R)q
0 1

]
R ∈ SO(3),

where R is a free parameter and q is the location of the center of the
wrist. Similarly, the velocity of a spherical joint has the form

V s =

[
−ω × q
ω

]
ω ∈ R3,

139

where ω is a free parameter (the velocity). To cast this equation into a
more useful framework, we rewrite V s as

V s =

[
−e1 × q −e2 × q −e3 × q
e1 e2 e3

]


ω1

ω2

ω3



 ,

where ei is the ith unit vector in R3. Notice that the columns of the
matrix which defines V s are never linearly dependent.

We can now write the structure equations for the Stewart platform.
Let gsi

(Rsi
) represent the orientation of the ith spherical joint attached

to the base and gti(Rti) represent the ith spherical joint attached to the
tool. Then, the structure equation for the Stewart platform is given by

gst = gs1(Rs1)e
bξ1θ1gt1(Rt1)gst(0) = · · · = gs6(Rs6)e

bξ6θ6gt6(Rt6)gst(0),

(3.72)

where ξi and θi model the motion of the ith prismatic joint.

Solving the forward kinematics for a Stewart platform is a very diffi-
cult problem due to the large number and complicated form of the con-
straints. Abstractly, given the length of the links, we can solve the struc-
ture equations to find the orientations of the ball and socket joints and
then determine the configuration of the tool frame. As the problem has
been specified here, there is an extra degree of freedom in each link cor-
responding to rotation of the prismatic joint about its own axis. This
further complicates the forward kinematics problem.

The inverse kinematics problem for the Stewart platform is remark-
ably simple. Given the desired configuration of the platform, we find
the locations of the pivot points and solve for the distance between each
base and the appropriate pivot. Let qsi

be the location of the ith pivot
point on the base and qti be the location of the tool pivot point (written
relative to the base and tool frames, respectively). Then, the extension
of the prismatic joints is given by

θi = ‖qsi
− gstqti‖.

It is possible to derive this result in a manner similar to that used in
solving the subproblems of Section 3; but in this case, the solution is
obvious from the geometry of the manipulator.

We may now study the mobility of the Stewart platform by calcu-
lating the Jacobian of the structure equation. Taking the Jacobian of

140

equation (3.72) yields

V sst =
[
ξs1,1 ξs1,2 ξs1,3 ξ′1 ξ′t1,1 ξ′t1,2 ξ′t1,3

]



ωs1
θ̇1
ωt1





= · · ·

=
[
ξs6,1 ξs6,2 ξs6,3 ξ′6 ξ′t6,1 ξ′t6,2 ξ′t6,3

]



ωs6
θ̇6
ωt6



 .

(3.73)

It can be shown that the Jacobian matrices are never singular as long as
θi is nonzero (see Exercise 22). Hence, all tool velocities are admissible.

However, an interesting problem occurs when the tool frame and base
frame are coplanar. In this case, the actuated joints can only generate
forces in the plane, and hence the mechanism cannot resist (or apply)
nonplanar forces or torques. Note that the mechanism is still not kine-
matically singular: the joints can accommodate any motion of the tool
frame. However, the actuated joints cannot generate the wrenches nec-
essary to actually achieve any motion. This is an example of the second
class of singularity that was mentioned previously. We call this type
of singularity an actuator singularity since it corresponds to a failure of
the actuated joints to be able to generate arbitrary wrenches in the tool
frame. This type of singularity is very closely related to the failure of the
force-closure conditions which occur in grasping.

A geometric interpretation of this singularity in the Stewart platform
can be obtained by noting that the system of wrenches which can be
applied to the tool frame is given by the set of all zero-pitch (pure force)
wrenches generated by the actuated joints through the points qti . Since
the prismatic joints generate zero-pitch wrenches, we can use the previ-
ously derived examples of singularities of zero-pitch screws to locate some
of the singularities of the Stewart platform. In this context, when the base
and tool frames are coplanar, we get a singularity because we have four
(actually six) coplanar, zero-pitch screws. A separate singularity occurs
whenever two of the prismatic joints are collinear.

Example 3.18. Singularities for a planar Stewart platform
Consider the planar parallel mechanism shown in Figure 3.22. Three ac-
tuated prismatic joints are used to control the position and orientation
of the platform. The revolute joints at the end of each link are pas-
sive. Kinematically, this mechanism shares some of the properties of the
Stewart platform.

We concentrate on the singularities of the mechanism. As with the
Stewart platform, it can be shown that there are no kinematic singu-
larities where the dimension of the space of achievable velocities drops
rank (it is always three). Since the actuated joints are all prismatic, the

141

R

Wrench diagram

F2 F1

F3

B

T h

d3

d2d1
r

R

r

Figure 3.22: A planar version of the Stewart platform.

wrenches generated by the joints correspond to zero-pitch screws. In the
plane, it can be shown that three zero-pitch screws intersecting at a point
are singular. This is exactly the configuration in which the mechanism is
drawn in Figure 3.22 (see the wrench diagram to the right).

Hence, in this configuration, it is not possible for the mechanism to
generate pure torques around the point of common intersection. This
is clear if we write down the wrenches relative to a coordinate frame
attached at the intersection point. In this set of coordinates, we have

F =

[
v1 v2 v3
0 0 0

]


f1
f2
f3



 ,

where vi is the direction of the ith prismatic axis and fi is the force
exerted by the ith actuator. It is clear that we cannot generate a pure
torque around the intersection point since

[
0
1

]
6∈ range

[
v1 v2 v3
0 0 0

]
.

142

6 Summary

The following are the key concepts covered in this chapter:

1. The forward kinematics of a manipulator is described by a mapping
gst : Q→ SE(3) which describes the end-effector configuration as a
function of the robot joint variables. For open-chain manipulators
consisting of revolute and prismatic joints, the kinematics can be
written using the product of exponentials formula:

gst(θ) = e
bξ1θ1e

bξ2θ2 · · · ebξnθngst(0),

where ξi is the twist corresponding to the ith joint axis in the ref-
erence (θ = 0) configuration.

2. The (complete) workspace of a manipulator is the set of end-effector
configurations which can be reached by some choice of joint angles.
The reachable workspace defines end-effector positions which can
be reached at some orientation. The dextrous workspace defines
end-effector positions which can be reached at any orientation.

3. The inverse kinematics of a manipulator describes the relationship
between the end-effector configuration and the joint angles which
achieve that configuration. For many manipulators, we can find the
inverse kinematics by making use of the following subproblems:

Subproblem 1: e
bξθp = q rotate one point onto

another

Subproblem 2: e
bξ1θ1e

bξ2θ2p = q rotate about two
intersecting twists

Subproblem 3: ‖q − ebξθp‖ = δ move one point to a specified
distance from another

To find a complete solution, we apply the manipulator kinemat-
ics to a set of points which reduce the complete problem into an
appropriate set of subproblems.

4. The manipulator Jacobian relates the joint velocities θ̇ to the end-
effector velocity Vst and the joint torques τ to the end-effector
wrench F :

V sst = Jsst(θ)θ̇ τ = (Jsst)
TFs (spatial)

V bst = Jbst(θ)θ̇ τ = (Jbst)
TFt (body).

If the manipulator kinematics is written using the product of expo-
nentials formula, then the manipulator Jacobians have the form:

Jsst(θ) =
[
ξ1 ξ′2 · · · ξ′n

]
ξ′i = Ad(

e
bξ1θ1 · · · ebξi−1θi−1

) ξi

Jbst(θ) =
[
ξ†1 · · · ξ†n−1 ξ†n

]
ξ†i = Ad−1(

e
bξiθi · · · ebξnθngst(0)

) ξi.

143

5. A configuration is singular if the manipulator Jacobian loses rank
at that configuration. Examples for a general six degree of freedom
arm include:

(a) Two collinear revolute joints

(b) Three parallel, coplanar revolute joint axes

(c) Four intersecting revolute joint axes

The manipulability of a robot provides a measure of the nearness
to singularity.

6. A manipulator is kinematically redundant if it has more than the
minimally required degrees of freedom. The self-motion manifold
describes the set of joint values which can be used to achieve a de-
sired configuration of the end-effector. Internal motions correspond
to motions along the self-motion manifold and satisfy

Jst(θ)θ̇ = 0.

7. A parallel manipulator has multiple kinematic chains connecting the
base to the end-effector. For the case of two chains, the kinematics
satisfies the structure equation

gst = e
bξ11θ11 · · · ebξ1n1

θ1n1 gst(0) = e
bξ21θ21 · · · ebξ2n2

θ2n2 gst(0),

where ξij is twist for the the jth joint on the ith chain. The Jacobian
of the structure equation has the form

V sst = Js1 (Θ1)Θ̇1 = Js2 (Θ2)Θ̇2,

where Θi = (θi1, . . . , θini
). A kinematic singularity occurs when

the dimension of the space of admissible forces drops rank. Other
singularities can occur when the set of end-effector forces which can
be generated by the actuated joints drops rank.

7 Bibliography

There is a vast literature on robot kinematics, including a number of text-
books devoted to analysis, design, and control of manipulators. For an
introductory treatment of the topics presented here, consult the textbook
by Craig [21]. See also [35, 36, 79, 90, 122]. The product of exponentials
formula was initially described by Brockett [12]; the presentation given
here was inspired by the dissertation of Paden [85]. A selection of ad-
vanced topics in the flavor of the tools presented in this section can be
found in a collection of papers edited by Brockett [13].

144

In terms of bounds on the number of inverse kinematic solutions to a
six degree of freedom manipulator, Rastegar, Roth and Scheinman [100]
established a bound of 32 using a non-constructive proof. This bound was
made constructive by Duffy and Crane [29] and reduced to 16 by Prim-
rose [94]. However, it was Lee and Liang [57] who gave a constructive
procedure for finding the inverse kinematic solutions for a general ma-
nipulator. The procedure has been refined by Roth and Raghavan [96]
and Manocha and Canny [64], whose account we follow in this chapter.
Manseur and Doty [65] gave an example of a robot with 16 inverse kine-
matic solutions.

The treatment of parallel mechanisms given here is not the standard
one. For a classical treatment of four-bar and other parallel mechanisms,
see, for example, Hunt [42]. A detailed description of the four-bar synthe-
sis problem, along with analytical and graphical solution techniques, can
be found in the book by Erdman and Sandor [30], in addition to other
textbooks on kinematics and design of mechanisms.

145

θ1

θ3

θ2

θ1

θ3
θ2

(i) (ii)

θ3

θ1

θ2

θ3

θ2

θ1

(iii) (iv)

Figure 3.23: Some simple three degree of freedom manipulators.

8 Exercises

1. Draw the twists axes for the manipulators shown in Chapter 1.

2. Show that the forward kinematics map for a manipulator is indepen-
dent of the order in which rotations and translations are performed.

3. For each of the three degree of freedom manipulators shown in
Figure 3.23:

(a) Find the forward kinematics map.

(b) Solve the inverse kinematics problem using the Paden-Kahan
subproblems.

(c) Derive the spatial and body Jacobians.

4. For each of the manipulators shown schematically in Figure 3.24:

(a) Find the forward kinematics map.

146

(i) Elbow manipulator (ii) Inverse elbow manipulator

(iii) Stanford manipulator (iv) Rhino robot

Figure 3.24: Sample manipulators. Revolute joints are represented by
cylinders; prismatic joints are represented by rectangular boxes.

(b) Solve the inverse kinematics problem using the Paden-Kahan
subproblems.

(c) Derive the spatial and body Jacobians.

(d) Give a geometric description of the singular configurations.

(e) Describe the reachable and dextrous workspaces and calculate
the number of inverse kinematic solutions in different regions
of the workspace.

(Note that some of these problems have already been solved in the
examples.)

5. Subproblem 2′: Rotation about two non-intersecting axes
Solve Subproblem 2 when the two axes ξ1 and ξ2 do not intersect.
Use this subproblem to solve the inverse kinematics for the elbow
manipulator in Example 3.5 when the first two joints do not inter-
sect at a point.

6. Subproblem 4: Rotation about two axes to given distances
Let ξ1, ξ2 be two zero-pitch unit magnitude twists with intersecting
axes, and p, q1, and q2 be points in R3 (see Figure 3.25). Find θ1
and θ2 such that

‖ebξ1θ1 e
bξ2θ2p− q1‖ = δ1

147

p

q

q2

δ2

q1

δ1

r

c

ξ2

ξ1
θ1

θ2

Figure 3.25: Subproblem 4: Rotate p about the axis of ξ1 followed by a
rotation about the axis of ξ2 such that the final location of p is δ1 from
q1 and δ2 from q2.

and
‖ebξ1θ1 e

bξ2θ2p− q2‖ = δ2.

(Hint: Find a point q such that q = e
bξ1θ1e

bξ2θ2p, and q is on the
intersection of the three spheres centered at, respectively, q1, q2,
and r, of radii δ1, δ2, and ‖p− r‖.)

7. Subproblem 5: Translation to a given distance
Let ξ be an infinite-pitch unit-magnitude twist; p, q ∈ R3 two
points; and δ a real number > 0. Find θ such that

‖q − ebξθp‖ = δ.

Use this subproblem to solve for the extension of the prismatic joint
in the SCARA robot in Example 3.6.

8. Show that the spatial velocity of a manipulator does not depend
on the location of the tool frame (as long as it moves with the
end-effector).

9. Singular values of a matrix
Let A : Rn → Rp represent a linear map and assume that r is the
rank of A. Thus, r ≤ min(n, p). Show that there exist matrices
U ∈ Rp×p, V ∈ Rn×n and Σ ∈ Rp×n such that

A = UΣV T , (3.74)

148

where

(a) The columns of V are orthonormal, i.e., V TV = I. Further, it
may be partitioned as

V =
[
v1 · · · vr vr+1 · · · vn

]
=
[
V1 V2

]

so that the range space of AT : Rp → Rn, denoted R(AT), is
spanned by the columns of V1, and the null space of A, denoted
η(A), is spanned by the columns of V2.

(b) The columns of U are orthonormal, i.e., UTU = I, and it may
be partitioned as

U =
[
u1 · · · ur ur+1 · · · up

]
=
[
U1 U2

]

so that R(A) is spanned by the columns of U1, and η(AT) is
spanned by the columns of U2.

(c) Σ is a matrix of dimension p× n of the form

Σ =

[
Σ1 0
0 0

]

with

Σ1 =




σ1 0

. . .

0 σr



 ∈ Rr×r, σ1 ≥ · · · ≥ σr > 0

The σi are called the singular values of A, and Σ ∈ Rp×n is
the representation of A in terms of the V basis for Rn and the
U basis for Rp.

10. Let J(θ) : Rn → R6 be the Jacobian of a manipulator. Show that
the manipulability measure µ3(θ) is given by the product of the
singular values of J(θ); that is,

µ3(θ) =
6∏

i=1

σi(θ).

Thus, µ3(θ) is zero if and only if the Jacobian is singular.

11. Let A : Rn → Rp be of rank r and have singular value decompo-
sition (3.74). Let B1 denote the ball of unit radius in Rn; that
is,

B1 = {x ∈ Rn, ‖x‖ ≤ 1}.
Use the description of the matrices U, V of Exercise 9 to find the
map under A of B1. Distinguish between the cases that p ≥ n and
p ≤ n and also when r < min(n, p).

149

12. Let J(θ) : Rn → Rp be the Jacobian of a manipulator (p = 3 or
6). Assume that a task is modeled by an ellipsoid in the task space
with its principal axes of length α1, · · · , αp. Let Eβ ⊂ Rp be an
ellipsoid of size scaled by β, namely

Eβ := {y :

(
y1
α1

)2

+ · · ·+
(
yp
αp

)2

≤ β}

Define a manipulability measure on J(θ) which takes into account
the task requirement as

µt(θ) := max{β : J(θ)(B1) ⊂ Eβ}.

Characterize µt(θ) in terms of the singular values of J(θ) and lengths
of the principal axes, α1, . . . , αp.

13. Isotropic points
A point in a manipulator’s workspace is said to be isotropic if the
condition number of the Jacobian is 1.

(a) Calculate conditions under which a two-link planar manipula-
tor has isotropic points and sketch their location in the plane.

(b) Compute the isotropic points for an elbow manipulator with-
out a wrist.

(c) Discuss why isotropic points are useful for tasks which involve
applying forces against the environment.

14. Euler angles can be used to represent rotations via the product of
exponentials formula. If we think of (α, β, γ) as joints angles of a
robot manipulator, then we can find the singularities of an Euler
angle parameterization by calculating the Jacobian of the “forward
kinematics,” where we are concerned only with the rotation por-
tion of the forward kinematics map. Use this point of view to find
singularities for the following classes of Euler angles:

(a) ZYZ Euler angles

(b) ZYX Euler angles

(c) XYZ Euler angles

15. Kinematic singularity: four coplanar revolute joints
Four revolute joint axes with twists ξi = (qi × ωi, ωi), i = 1, . . . , 4,
are said to be coplanar if there exists a plane with unit normal n
such that:

(a) Each axis direction is orthogonal to n: nTωi = 0, i = 1, . . . , 4.

150

(b) The vector from qi to qj is orthogonal to n: nT (qi − qj) = 0,
i = 1, . . . , 4.

Show that when four of its revolute joint axes are coplanar, a six
degree of freedom manipulator is at a singular configuration. Give
an example of a manipulator exhibiting such a singularity.

16. Kinematic singularity: six revolute joints intersecting along a line
Six revolute joint axes with twists ξi = (qi × ωi, ωi), i = 1, . . . , 6,
intersect along a line (p × n, n) if there exist constants γi, βi ∈ R,
i = 1, ...6, such that

qi + γiωi = p+ βin.

Show that when the six revolute joint axes of a six degree of freedom
manipulator intersect along a line, the manipulator is at a singular
configuration.

17. Kinematic singularity: prismatic joint perpendicular to two parallel
coplanar revolute joints
A prismatic joint with twist ξ3 = (v3, 0) is normal to a plane con-
taining two parallel revolute axes ξi = (qi × ωi, ωi), i = 1, 2, if

(a) vT3 ωi = 0, i = 1, 2

(b) vT3 (q1 − q2) = 0

(c) ω1 = ±ω2

Show that when this occurs, a six degree of freedom manipulator
is at a singular configuration. Give an example of a manipulator
exhibiting such a singularity.

18. In general, the manipulator Jacobian depends on the choice of base
and tool frames. Determine which of the manipulability measures
described in Section 4.4 is independent of the choice of base and/or
tool frames.

19. Show that if a manipulator is at a singular configuration, then there
exists an end-effector wrench F which can be balanced without
applying any joint torques. How is the wrench related to the twists
which form the columns of the Jacobian?

20. Consider the slider-crank mechanism shown below:

151

θ1

θ2
l1

l2 TS

θ3

d
l3

(a) Calculate the number of degrees of freedom of the mechanism.
Explain why the spatial version of Gruebler’s formula cannot
be used.

(b) Calculate the structure equations for the mechanism.

(c) Calculate the Jacobian of the structure equations; give explicit
expressions for the instantaneous twists for each of the joints.

(d) Find the singular configurations of the mechanism if d is the
active variable.

(e) Find the singular configurations if θ1 is treated as the active
variable. Under what conditions (on l1, l2, l3) do singular
configurations exist?

21. The figure below shows a planar parallel manipulator called a “vari-
able geometry truss.” Three actuated prismatic joints are used to
control the position and orientation of the platform. The revolute
joints at the end of each link are passive. Assume that that there
are no actuator limits.

Another configuration

d1

d2

d3
B Th

w

(a) Use Gruebler’s formula to calculate the number of degrees of
freedom of the mechanism.

(b) Write the structure equations for the mechanism. Be sure to
clearly define your zero configuration.

(c) Given gst = ([x, y], Rφ), find explicit expressions for d1, d2,
and d3.

152

(d) Find the spatial Jacobian of the structure equations. Give an
explicit answer. Use the fact that some links intersect at a
point to minimize extra calculations.

(e) Find the singular configurations of the mechanism. In addition
to kinematic singularities, also identify any actuator singular-
ities.

22. Stewart platform
Consider the Stewart platform shown in Figure 3.21. Let θi repre-
sent the displacement of the ith prismatic actuator.

(a) Use Gruebler’s formula to compute the number of degrees of
freedom of the mechanism.

(b) Show that if θi > 0 for all i, then the mechanism is not at a
singular configuration.

(c) Suppose that we replace the spherical joints in the Stewart
platform with U-joints (a U-joint consists of two orthogonal
revolute joints which intersect at a point). Use Gruebler’s
formula to compute the number of degrees of freedom of the
mechanism.

(d) Derive the structure equations for the mechanism in part (c).
Are there any singular configurations?

153

154

Chapter 4

Robot Dynamics and

Control

This chapter presents an introduction to the dynamics and control of
robot manipulators. We derive the equations of motion for a general
open-chain manipulator and, using the structure present in the dynam-
ics, construct control laws for asymptotic tracking of a desired trajectory.
In deriving the dynamics, we will make explicit use of twists for repre-
senting the kinematics of the manipulator and explore the role that the
kinematics play in the equations of motion. We assume some familiarity
with dynamics and control of physical systems.

1 Introduction

The kinematic models of robots that we saw in the last chapter describe
how the motion of the joints of a robot is related to the motion of the rigid
bodies that make up the robot. We implicitly assumed that we could
command arbitrary joint level trajectories and that these trajectories
would be faithfully executed by the real-world robot. In this chapter, we
look more closely at how to execute a given joint trajectory on a robot
manipulator.

Most robot manipulators are driven by electric, hydraulic, or pneu-
matic actuators, which apply torques (or forces, in the case of linear
actuators) at the joints of the robot. The dynamics of a robot manipu-
lator describes how the robot moves in response to these actuator forces.
For simplicity, we will assume that the actuators do not have dynamics
of their own and, hence, we can command arbitrary torques at the joints
of the robot. This allows us to study the inherent mechanics of robot
manipulators without worrying about the details of how the joints are
actuated on a particular robot.

155

We will describe the dynamics of a robot manipulator using a set of
nonlinear, second-order, ordinary differential equations which depend on
the kinematic and inertial properties of the robot. Although in principle
these equations can be derived by summing all of the forces acting on
the coupled rigid bodies which form the robot, we shall rely instead on
a Lagrangian derivation of the dynamics. This technique has the advan-
tage of requiring only the kinetic and potential energies of the system to
be computed, and hence tends to be less prone to error than summing
together the inertial, Coriolis, centrifugal, actuator, and other forces act-
ing on the robot’s links. It also allows the structural properties of the
dynamics to be determined and exploited.

Once the equations of motion for a manipulator are known, the inverse
problem can be treated: the control of a robot manipulator entails finding
actuator forces which cause the manipulator to move along a given tra-
jectory. If we have a perfect model of the dynamics of the manipulator,
we can find the proper joint torques directly from this model. In practice,
we must design a feedback control law which updates the applied forces
in response to deviations from the desired trajectory. Care is required in
designing a feedback control law to insure that the overall system con-
verges to the desired trajectory in the presence of initial condition errors,
sensor noise, and modeling errors.

In this chapter, we primarily concentrate on one of the simplest robot
control problems, that of regulating the position of the robot. There are
two basic ways that this problem can be solved. The first, referred to as
joint space control, involves converting a given task into a desired path
for the joints of the robot. A control law is then used to determine joint
torques which cause the manipulator to follow the given trajectory. A
different approach is to transform the dynamics and control problem into
the task space, so that the control law is written in terms of the end-
effector position and orientation. We refer to this approach as workspace
control.

A much harder control problem is one in which the robot is in contact
with its environment. In this case, we must regulate not only the position
of the end-effector but also the forces it applies against the environment.
We discuss this problem briefly in the last section of this chapter and defer
a more complete treatment until Chapter 6, after we have introduced the
tools necessary to study constrained systems.

2 Lagrange’s Equations

There are many methods for generating the dynamic equations of a me-
chanical system. All methods generate equivalent sets of equations, but
different forms of the equations may be better suited for computation
or analysis. We will use a Lagrangian analysis for our derivation, which

156

relies on the energy properties of mechanical systems to compute the
equations of motion. The resulting equations can be computed in closed
form, allowing detailed analysis of the properties of the system.

2.1 Basic formulation

Consider a system of n particles which obeys Newton’s second law—the
time rate of change of a particle’s momentum is equal to the force applied
to a particle. If we let Fi be the applied force on the ith particle, mi be
the particle’s mass, and ri be its position, then Newton’s law becomes

Fi = mir̈i ri ∈ R3, i = 1, . . . , n. (4.1)

Our interest is not in a set of independent particles, but rather in
particles which are attached to one another and have limited degrees
of freedom. To describe this interconnection, we introduce constraints
between the positions of our particles. Each constraint is represented by
a function gj : R3n → R such that

gj(r1, . . . , rn) = 0 j = 1, . . . , k. (4.2)

A constraint which can be written in this form, as an algebraic rela-
tionship between the positions of the particles, is called a holonomic con-
straint. More general constraints between rigid bodies—involving ṙi—can
also occur, as we shall discover when we study multifingered hands.

A constraint acts on a system of particles through application of con-
straint forces. The constraint forces are determined in such a way that
the constraint in equation (4.2) is always satisfied. If we view the con-
straint as a smooth surface in Rn, the constraint forces are normal to this
surface and restrict the velocity of the system to be tangent to the sur-
face at all times. Thus, we can rewrite our system dynamics as a vector
equation

F =

[
m1I 0

. . .
0 mnI

][
r̈1...
r̈n

]
+

k∑

j=1

Γjλj , (4.3)

where the vectors Γ1, . . . ,Γk ∈ R3n are a basis for the forces of constraint
and λj is the scale factor for the jth basis element. We do not require that
Γ1, . . . ,Γk be orthonormal. For constraints of the form in equation (4.2),
Γj can be taken as the gradient of gj , which is perpendicular to the level
set gj(r) = 0.

The scalars λ1, . . . , λk are called Lagrange multipliers. Formally, we
determine the Lagrange multipliers by solving the 3n + k equations in
equations (4.2) and (4.3) for the 3n + k variables r ∈ R3n and λ ∈ Rk.
The λi values only give the relative magnitudes of the constraint forces
since the vectors Γj are not necessarily orthonormal.

157

This approach to dealing with constraints is intuitively simple but
computationally complex, since we must keep track of the state of all
particles in the system even though they are not capable of independent
motion. A more appealing approach is to describe the motion of the
system in terms of a smaller set of variables that completely describes the
configuration of the system. For a system of n particles with k constraints,
we seek a set of m = 3n − k variables q1, . . . , qm and smooth functions
f1, . . . , fn such that

ri = fi(q1, . . . , qm)

i = 1, . . . , n
⇐⇒ gj(r1, . . . , rn) = 0

j = 1, . . . , k.
(4.4)

We call the qi’s a set of generalized coordinates for the system. For a
robot manipulator consisting of rigid links, these generalized coordinates
are almost always chosen to be the angles of the joints. The specification
of these angles uniquely determines the position of all of the particles
which make up the robot.

Since the values of the generalized coordinates are sufficient to specify
the position of the particles, we can rewrite the equations of motion for
the system in terms of the generalized coordinates. To do so, we also
express the external forces applied to the system in terms of components
along the generalized coordinates. We call these forces generalized forces
to distinguish them from physical forces, which are always represented
as vectors in R3. For a robot manipulator with joint angles acting as
generalized coordinates, the generalized forces are the torques applied
about the joint axes.

To write the equations of motion, we define the Lagrangian, L, as the
difference between the kinetic and potential energy of the system. Thus,

L(q, q̇) = T (q, q̇)− V (q),

where T is the kinetic energy and V is the potential energy of the system,
both written in generalized coordinates.

Theorem 4.1. Lagrange’s equations
The equations of motion for a mechanical system with generalized coor-
dinates q ∈ Rm and Lagrangian L are given by

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Υi i = 1, . . . ,m, (4.5)

where Υi is the external force acting on the ith generalized coordinate.

The equations in (4.5) are called Lagrange’s equations. We will often
write them in vector form as

d

dt

∂L

∂q̇
− ∂L

∂q
= Υ,

158

l

θ

mg

φ

Figure 4.1: Idealized spherical pendulum. The configuration of the sys-
tem is described by the angles θ and φ.

where ∂L
∂q̇ , ∂L∂q , and Υ are to be formally regarded as row vectors, though

we often write them as column vectors for notational convenience. A
proof of Theorem 4.1 can be found in most books on dynamics of me-
chanical systems (e.g., [99]).

Lagrange’s equations are an elegant formulation of the dynamics of
a mechanical system. They reduce the number of equations needed to
describe the motion of the system from n, the number of particles in the
system, to m, the number of generalized coordinates. Note that if there
are no constraints, then we can choose q to be the components of r, giving
T = 1

2

∑
mi‖ṙ2i ‖, and equation (4.5) then reduces to equation (4.1). In

fact, rearranging equation (4.5) as

d

dt

∂L

∂q̇
=
∂L

∂q
+ Υ

is just a restatement of Newton’s law in generalized coordinates:

d

dt
(momentum) = applied force.

The motion of the individual particles can be recovered through applica-
tion of equation (4.4).

Example 4.1. Dynamics of a spherical pendulum
Consider an idealized spherical pendulum as shown in Figure 4.1. The
system consists of a point with mass m attached to a spherical joint by a
massless rod of length l. We parameterize the configuration of the point
mass by two scalars, θ and φ, which measure the angular displacement
from the z- and x-axes, respectively. We wish to solve for the motion of
the mass under the influence of gravity.

159

We begin by deriving the Lagrangian for the system. The position of
the mass, relative to the origin at the base of the pendulum, is given by

r(θ, φ) =




l sin θ cosφ
l sin θ sinφ
−l cos θ



 . (4.6)

The kinetic energy is

T =
1

2
ml2‖ṙ‖2 =

1

2
ml2

(
θ̇2 + (1− cos2 θ)φ̇2

)

and the potential energy is

V = −mgl cos θ,

where g ≈ 9.8 m/sec2 is the gravitational constant. Thus, the Lagrangian
is given by

L(q, q̇) =
1

2
ml2

(
θ̇2 + (1− cos2 θ)φ̇2

)
+mgl cos θ,

where q = (θ, φ).
Substituting L into Lagrange’s equations gives

d

dt

∂L

∂θ̇
=

d

dt

(
ml2θ̇

)
= ml2θ̈

∂L

∂θ
= ml2 sin θ cos θ φ̇2 −mgl sin θ

d

dt

∂L

∂φ̇
=

d

dt

(
ml2 sin2 θφ̇

)
= ml2 sin2 θ φ̈+ 2ml2 sin θ cos θ θ̇φ̇

∂L

∂φ
= 0

and the overall dynamics satisfy

[
ml2 0
0 ml2 sin2 θ

] [
θ̈

φ̈

]
+

[
−ml2 sin θ cos θ φ̇2

2ml2 sin θ cos θ θ̇φ̇

]
+

[
mgl sin θ

0

]
= 0.

(4.7)
Given the initial position and velocity of the point mass, equation (4.7)
uniquely determines the subsequent motion of the system. The motion
of the mass in R3 can be retrieved from equation (4.6).

2.2 Inertial properties of rigid bodies

To apply Lagrange’s equations to a robot, we must calculate the kinetic
and potential energy of the robot links as a function of the joint angles

160

r

A

g

B

Figure 4.2: Coordinate frames for calculating the kinetic energy of a
moving rigid body.

and velocities. This, in turn, requires that we have a model for the mass
distribution of the links. Since each link is a rigid body, its kinetic and
potential energy can be defined in terms of its total mass and its moments
of inertia about the center of mass.

Let V ⊂ R3 be the volume occupied by a rigid body, and ρ(r), r ∈
V be the mass distribution of the body. If the object is made from a
homogeneous material, then ρ(r) = ρ, a constant. The mass of the body
is the volume integral of the mass density:

m =

∫

V

ρ(r) dV.

The center of mass of the body is the weighted average of the density:

r̄ =
1

m

∫

V

ρ(r)r dV.

Consider the rigid object shown in Figure 4.2. We compute the kinetic
energy as follows: fix the body frame at the mass center of the object
and let (p,R) be a trajectory of the object relative to an inertial frame,
where we have dropped all subscripts to simplify notation. Let r ∈ R3 be
the coordinates of a body point relative to the body frame. The velocity
of the point in the inertial frame is given by

ṗ+ Ṙ r

and the kinetic energy of the object is given by the following volume
integral:

T =
1

2

∫

V

ρ(r)‖ṗ+ Ṙr‖2 dV. (4.8)

Expanding the product in the kinetic energy integral yields

T =
1

2

∫

V

ρ(r)
(
‖ṗ‖2 + 2ṗT Ṙr + ‖Ṙr‖2

)
dV.

161

The first term of the above expression gives the translational kinetic
energy. The second term vanishes because the body frame is placed at
the mass center of the object and

∫

V

ρ(r)(ṗT Ṙ)r dV = (ṗT Ṙ)

∫

V

ρ(r)r dV = 0.

The last term can be simplified using properties of rotation and skew-
symmetric matrices:

1

2

∫

V

ρ(r)(Ṙr)T (Ṙr) dV =
1

2

∫

V

ρ(r)(Rω̂r)T (Rω̂r) dV

=
1

2

∫

V

ρ(r)(r̂ω)T (r̂ω) dV

=
1

2
ωT
(∫

V

ρ(r)r̂T r̂dV

)
ω =:

1

2
ωTIω,

where ω ∈ R3 is the body angular velocity. The symmetric matrix I ∈
R3×3 defined by

I =




Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



 = −
∫

V

ρ(r)r̂2 dV

is called the inertia tensor of the object expressed in the body frame. It
has entries

Ixx =

∫

V

ρ(r)(y2 + z2) dx dy dz

Ixy = −
∫

V

ρ(r)(xy) dx dy dz,

and the other entries are defined similarly.
The total kinetic energy of the object can now be written as the sum

of a translational component and a rotational component,

T =
1

2
m‖ṗ‖2 +

1

2
ωTIω

=
1

2
(V b)T

[
mI 0
0 I

]
V b =:

1

2
(V b)TMV b,

(4.9)

where V̂ b = g−1ġ ∈ se(3) is the body velocity, and M is called the
generalized inertia matrix of the object, expressed in the body frame.
The matrix M is symmetric and positive definite.

Example 4.2. Generalized inertia matrix for a homogeneous bar
Consider a homogeneous rectangular bar with mass m, length l, width
w, and height h, as shown in Figure 4.3. The mass density of the bar is

162

y

w

l

h

x

z

Figure 4.3: A homogeneous rectangular bar.

ρ = m
lwh . We attach a coordinate frame at the center of mass of the bar,

with the coordinate axes aligned with the principal axes of the bar.
The inertia tensor is evaluated using the previous formula:

Ixx =

∫

V

m

lwh

(
y2 + z2

)
dV =

m

lwh

∫ h/2

−h/2

∫ w/2

−w/2

∫ l/2

−l/2

(
y2 + z2

)
dx dy dz

=
m

lwh

(
1

12

(
lw3h+ lwh3

))
=
m

12
(w2 + h2),

Ixy = −
∫

V

m

lwh
(xy) dV = − m

lwh

∫ h/2

−h/2

∫ w/2

−w/2

∫ l/2

−l/2
(xy) dx dy dz

= − m

lwh

∫ h/2

−h/2

∫ w/2

−w/2

(
1

2
x2y|l/2−l/2

)
dy dz = 0.

The other entries are calculated in the same manner and we have:

I =




m
12 (w2 + h2) 0 0

0 m
12 (l2 + h2) 0

0 0 m
12 (l2 + w2)



 .

The inertia tensor is diagonal by virtue of the fact that we aligned the
coordinate axes with the principal axes of the box.

The generalized inertia matrix is given by

M =

[
mI 0
0 I

]
=





m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 m

12 (w2+h2) 0 0

0 0 0 0 m
12 (l2+h2) 0

0 0 0 0 0 m
12 (l2+w2)



 .

The block diagonal structure of this matrix relies on attaching the body
coordinate frame at center of mass (see Exercise 3).

163

θ1

l1

θ2

l2

r1

r2

x

y

Figure 4.4: Two-link planar manipulator.

2.3 Example: Dynamics of a two-link planar robot

To illustrate how Lagrange’s equations apply to a simple robotic system,
consider the two-link planar manipulator shown in Figure 4.4. Model
each link as a homogeneous rectangular bar with mass mi and moment
of inertia tensor

Ii =

[
Ixi 0 0
0 Iyi 0
0 0 Izi

]

relative to a frame attached at the center of mass of the link and aligned
with the principle axes of the bar. Letting vi ∈ R3 be the translational
velocity of the center of mass for the ith link and ωi ∈ R3 be the angular
velocity, the kinetic energy of the manipulator is

T (θ, θ̇) =
1

2
m1‖v1‖2 +

1

2
ωT1 I1ω1 +

1

2
m2‖v2‖2 +

1

2
ωT2 I2ω2.

Since the motion of the manipulator is restricted to the xy plane, ‖vi‖ is
the magnitude of the xy velocity of the center of mass and ωi is a vector
in the direction of the z-axis, with ‖ω1‖ = θ̇1 and ‖ω2‖ = θ̇1 + θ̇2.

We solve for the kinetic energy in terms of the generalized coordinates
by using the kinematics of the mechanism. Let pi = (xi, yi, 0) denote the
position of the ith center of mass. Letting r1 and r2 be the distance from
the joints to the center of mass for each link, as shown in the figure, we
have

x̄1 = r1c1 ˙̄x1 = −r1s1θ̇1
ȳ1 = r1s1 ˙̄y1 = r1c1θ̇1

x̄2 = l1c1 + r2c12 ˙̄x2 = −(l1s1 + r2s12)θ̇1 − r2s12θ̇2
ȳ2 = l1s1 + r2s12 ˙̄y2 = (l1c1 + r2c12)θ̇1 + r2c12θ̇2,

where si = sin θi, sij = sin(θi + θj), and similarly for ci and cij . The

164

kinetic energy becomes

T (θ, θ̇) =
1

2
m1(˙̄x2

1 + ˙̄y2
1) +

1

2
Iz1θ̇21 +

1

2
m2(˙̄x2

2 + ˙̄y2
2) +

1

2
Iz2(θ̇1 + θ̇2)

2

=
1

2

[
θ̇1
θ̇2

]T [
α+ 2βc2 δ + βc2
δ + βc2 δ

] [
θ̇1
θ̇2

]
,

(4.10)
where

α = Iz1 + Iz2 +m1r
2
1 +m2(l

2
1 + r22)

β = m2l1r2

δ = Iz2 +m2r
2
2.

Finally, we can substitute the Lagrangian L = T into Lagrange’s
equations to obtain (after some calculation)

[
α+ 2βc2 δ + βc2
δ + βc2 δ

] [
θ̈1
θ̈2

]
+

[
−βs2θ̇2 −βs2(θ̇1 + θ̇2)

βs2θ̇1 0

] [
θ̇1
θ̇2

]
=

[
τ1
τ2

]
.

(4.11)
The first term in this equation represents the inertial forces due to accel-
eration of the joints, the second represents the Coriolis and centrifugal
forces, and the right-hand side is the applied torques.

2.4 Newton-Euler equations for a rigid body

Lagrange’s equations provide a very general method for deriving the equa-
tions of motion for a mechanical system. However, implicit in the deriva-
tion of Lagrange’s equations is the assumption that the configuration
space of the system can be parameterized by a subset of Rn, where n is
the number of degrees of freedom of the system. For a rigid body with
configuration g ∈ SE(3), Lagrange’s equations cannot be directly used
to determine the equations of motion unless we choose a local parame-
terization for the configuration space (for example, using Euler angles to
parameterize the orientation of the rigid body). Since all parameteriza-
tions of SE(3) are singular at some configuration, such a derivation can
only hold locally.

In this section, we give a global characterization of the dynamics of a
rigid body subject to external forces and torques. We begin by reviewing
the standard derivation of the equations of rigid body motion and then
examine the dynamics in terms of twists and wrenches.

Let g = (p,R) ∈ SE(3) be the configuration of a coordinate frame
attached to the center of mass of a rigid body, relative to an inertial
frame. Let f represent a force applied at the center of mass, with the
coordinates of f specified relative to the inertial frame. The translational

165

equations of motion are given by Newton’s law, which can written in
terms of the linear momentum mṗ as

f =
d

dt
(mṗ).

Since the mass of the rigid body is constant, the translational motion of
the center of mass becomes

f = mp̈. (4.12)

These equations are independent of the angular motion of the rigid body
because we have used the center of mass to represent the position of the
body.

Similarly, the equations describing angular motion can be derived in-
dependently of the linear motion of the system. Consider the rotational
motion of a rigid body about a point, subject to an externally applied
torque τ . To derive the equations of motion, we equate the change in an-
gular momentum to the applied torque. The angular momentum relative
to an inertial frame is given by I ′ωs, where

I ′ = RIRT

is the instantaneous inertia tensor relative to the inertial frame and ωs is
the spatial angular velocity. The angular equations of motion become

τ =
d

dt
(I ′ωs) =

d

dt
(RIRTωs),

where τ ∈ R3 is specified relative to the inertial frame. Expanding the
right-hand side of this equation, we have

τ = RIRT ω̇s + ṘIRTωs +RIṘTωs

= I ′ω̇s + ṘRTI ′ωs + I ′RṘTωs
= I ′ω̇s + ωs × I ′ωs − I ′ωs × ωs,

where the last equation follows by differentiating the identity RRT = I
and using the definition of ωs. The last term of this equation is zero, and
hence the dynamics are given by

I ′ω̇s + ωs × I ′ωs = τ. (4.13)

Equation (4.13) is called Euler’s equation.
Equations (4.12) and (4.13) describe the dynamics of a rigid body in

terms of a force and torque applied at the center of mass of the object.
However, the coordinates of the force and torque vectors are not written
relative to a body-fixed frame attached at the center of mass, but rather
with respect to an inertial frame. Thus the pair (f, τ) ∈ R6 is not the

166

wrench applied to the rigid body, as defined in Chapter 2, since the
point of application is not the origin of the inertial coordinate frame.
Similarly, the velocity pair (ṗ, ωs) does not correspond to the spatial or
body velocity, since ṗ is not the correct expression for the linear velocity
term in either body or spatial coordinates.

In order to express the dynamics in terms of twists and wrenches, we
rewrite Newton’s equation using the body velocity vb = RT ṗ and body
force f b = RT f . Expanding the right-hand side of equation (4.12),

d

dt
(mṗ) =

d

dt
(mRvb) = Rmv̇b + Ṙmvb,

and pre-multiplying by RT , the translational dynamics become

mv̇b + ωb ×mvb = f b. (4.14)

Equation (4.14) is Newton’s law written in body coordinates.

Similarly, we can write Euler’s equation in terms of the body angular
velocity ωb = RTωs and the body torque τ b = RT τ . A straightforward
computation shows that

Iω̇b + ωb × Iωb = τ b. (4.15)

Equation (4.15) is Euler’s equation, written in body coordinates. Note
that in body coordinates the inertia tensor is constant and hence we use
I instead of I ′ = RIRT .

Combining equations (4.14) and (4.15) gives the equations of motion
for a rigid body subject to an external wrench F applied at the center of
mass and specified with respect to the body coordinate frame:

[
mI 0
0 I

] [
v̇b

ω̇b

]
+

[
ωb ×mvb
ωb × Iωb

]
= F b (4.16)

This equation is called the Newton-Euler equation in body coordinates.
It gives a global description of the equations of motion for a rigid body
subject to an external wrench. Note that the linear and angular motions
are coupled since the linear velocity in body coordinates depends on the
current orientation.

It is also possible to write the Newton-Euler equations relative to a
spatial coordinate frame. This version is explored in Exercises 4 and 5.
Once again the equations for linear and angular motion are coupled,
so that the translational motion still depends on the rotational motion.
In this book we shall always write the Newton-Euler equations in body
coordinates, as in equation (4.16).

167

3 Dynamics of Open-Chain Manipulators

We now derive the equations of motion for an open-chain robot manipu-
lator. We shall use the kinematics formulation presented in the previous
chapter to write the Lagrangian for the robot in terms of the joint angles
and joint velocities. Using this form of the dynamics, we explore several
fundamental properties of robot manipulators which are of importance
when proving the stability of robot control laws.

3.1 The Lagrangian for an open-chain robot

To calculate the kinetic energy of an open-chain robot manipulator with
n joints, we sum the kinetic energy of each link. For this we define a
coordinate frame, Li, attached to the center of mass of the ith link. Let

gsli(θ) = e
bξ1θ1 · · · ebξiθigsli(0)

represent the configuration of the frame Li relative to the base frame of
the robot, S. The body velocity of the center of mass of the ith link is
given by

V bsli = Jbsli(θ)θ̇,

where Jbsli is the body Jacobian corresponding to gsli . J
b
sli

has the form

Jbsli(θ) =
[
ξ†1 · · · ξ†i 0 · · · 0

]
,

where
ξ†j = Ad−1(

e
bξjθj · · · ebξiθigsli(0)

) ξj j ≤ i

is the jth instantaneous joint twist relative to the ith link frame. To
streamline notation, we write Jbsli as Ji for the remainder of this section.

The kinetic energy of the ith link is

Ti(θ, θ̇) =
1

2
(V bsli)

TMiV
b
sli =

1

2
θ̇TJTi (θ)MiJi(θ)θ̇, (4.17)

whereMi is the generalized inertia matrix for the ith link. Now the total
kinetic energy can be written as

T (θ, θ̇) =

n∑

i=1

Ti(θ, θ̇) =:
1

2
θ̇TM(θ)θ̇. (4.18)

The matrix M(θ) ∈ Rn×n is the manipulator inertia matrix. In terms of
the link Jacobians, Ji, the manipulator inertia matrix is defined as

M(θ) =

n∑

i=1

JTi (θ)MiJi(θ). (4.19)

168

To complete our derivation of the Lagrangian, we must calculate the
potential energy of the manipulator. Let hi(θ) be the height of the center
of mass of the ith link (height is the component of the position of the
center of mass opposite the direction of gravity). The potential energy
for the ith link is

Vi(θ) = mighi(θ),

where mi is the mass of the ith link and g is the gravitational constant.
The total potential energy is given by the sum of the contributions from
each link:

V (θ) =

n∑

i=1

Vi(θ) =

n∑

i=1

mighi(θ).

Combining this with the kinetic energy, we have

L(θ, θ̇) =

n∑

i=1

(
Ti(θ, θ̇)− Vi(θ)

)
=

1

2
θ̇TM(θ)θ̇ − V (θ).

3.2 Equations of motion for an open-chain manipu-

lator

Let θ ∈ Rn be the joint angles for an open-chain manipulator. The
Lagrangian is of the form

L(θ, θ̇) =
1

2
θ̇TM(θ)θ̇ − V (θ),

where M(θ) is the manipulator inertia matrix and V (θ) is the potential
energy due to gravity. It will be convenient to express the kinetic energy
as a sum,

L(θ, θ̇) =
1

2

n∑

i,j=1

Mij(θ)θ̇iθ̇j − V (θ). (4.20)

The equations of motion are given by substituting into Lagrange’s
equations,

d

dt

∂L

∂θ̇i
− ∂L

∂θi
= Υi,

where we let Υi represent the actuator torque and other nonconservative,
generalized forces acting on the ith joint. Using equation (4.20), we have

d

dt

∂L

∂θ̇i
=

d

dt
(

n∑

j=1

Mij θ̇j) =

n∑

j=1

(
Mij θ̈j + Ṁij θ̇j

)

∂L

∂θi
=

1

2

n∑

j,k=1

∂Mkj

∂θi
θ̇kθ̇j −

∂V

∂θi
.

169

The Ṁij term can now be expanded in terms of partial derivatives to
yield

n∑

j=1

Mij(θ)θ̈j +

n∑

j,k=1

(
∂Mij

∂θk
θ̇j θ̇k −

1

2

∂Mkj

∂θi
θ̇kθ̇j

)
+
∂V

∂θi
(θ) = Υi

i = 1, . . . , n.

Rearranging terms, we can write

n∑

j=1

Mij(θ)θ̈j +

n∑

j,k=1

Γijkθ̇j θ̇k +
∂V

∂θi
(θ) = Υi i = 1, . . . , n, (4.21)

where Γijk is given by

Γijk =
1

2

(
∂Mij(θ)

∂θk
+
∂Mik(θ)

∂θj
− ∂Mkj(θ)

∂θi

)
. (4.22)

Equation (4.21) is a second-order differential equation in terms of the
manipulator joint variables. It consists of four pieces: inertial forces,
which depend on the acceleration of the joints; centrifugal and Coriolis
forces, which are quadratic in the joint velocities; potential forces, of the
form ∂V

∂θi
; and external forces, Υi.

The centrifugal and Coriolis terms arise because of the non-inertial
frames which are implicit in the use of generalized coordinates. In the
classical mechanics literature, one identifies terms of the form θ̇iθ̇j , i 6= j

as Coriolis forces and terms of the form θ̇2i as centrifugal forces. The
functions Γijk are called the Christoffel symbols corresponding to the
inertia matrix M(θ).

The external forces can be divided into two components. Let τi repre-
sent the applied torque at the joint and define −Ni(θ, θ̇) to be any other
forces which act on the ith generalized coordinate, including conservative
forces arising from a potential as well as frictional forces. (The reason
for the negative sign in the definition of Ni will become apparent in a
moment.) As an example, if the manipulator has viscous friction at the
joints, then Ni would be defined as

−Ni(θ, θ̇) = −∂V
∂θi
− βθ̇i,

where β is the damping coefficient. Other forces acting on the manip-
ulator, such as forces applied at the end-effector, can also be included
by reflecting them to the joints (via the transpose of the appropriate
Jacobian).

170

In order to put the equations of motion back into vector form, we
define the matrix C(θ, θ̇) ∈ Rn×n as

Cij(θ, θ̇) =

n∑

k=1

Γijkθ̇k =
1

2

n∑

k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi

)
θ̇k.

(4.23)
We call the matrix C the Coriolis matrix for the manipulator; the vector
C(θ, θ̇)θ̇ gives the Coriolis and centrifugal force terms in the equations
of motion. Note that there are other ways to define the matrix C(θ, θ̇)
such that Cij(θ, θ̇)θ̇j = Γijkθ̇j θ̇k. However, this particular choice has
important properties which we shall later exploit.

Equation (4.21) can now be rewritten as

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ (4.24)

where τ is the vector of actuator torques and N(θ, θ̇) includes gravity
terms and other forces which act at the joints. This is a second-order
vector differential equation for the motion of the manipulator as a func-
tion of the applied joint torques. The matrices M and C, which sum-
marize the inertial properties of the manipulator, have some important
properties which we shall use in the sequel:

Lemma 4.2. Structural properties of the robot equations of mo-
tion
Equation (4.24) satisfies the following properties:

1. M(θ) is symmetric and positive definite.

2. Ṁ − 2C ∈ Rn×n is a skew-symmetric matrix.

Proof. Positive definiteness of the inertia matrix follows directly from
its definition and the fact that the kinetic energy of the manipulator is
zero only if the system is at rest. To show property 2, we calculate the
components of the matrix Ṁ − 2C:

(Ṁ − 2C)ij = Ṁij(θ)− 2Cij(θ)

=

n∑

k=1

∂Mij

∂θk
θ̇k −

∂Mij

∂θk
θ̇k −

∂Mik

∂θj
θ̇k +

∂Mkj

∂θi
θ̇k

=

n∑

k=1

∂Mkj

∂θi
θ̇k −

∂Mik

∂θj
θ̇k.

Switching i and j shows (Ṁ − 2C)T = −(Ṁ − 2C). Note that the skew-
symmetry property depends upon the particular definition of C given in
equation (4.23).

171

θ1

θ2

l0

θ3
l1 l2

r2r1

S
r0

L1

L2 L3

Figure 4.5: Three-link, open-chain manipulator.

Property 2 is often referred to as the passivity property since it implies,
among other things, that in the absence of friction the net energy of the
robot system is conserved (see Exercise 8). The passivity property is
important in the proof of many control laws for robot manipulators.

Example 4.3. Dynamics of a three-link manipulator
To illustrate the formulation presented above, we calculate the dynamics
of the three-link manipulator shown in Figure 4.5. The joint twists were
computed in Chapter 3 (for the elbow manipulator) and are given by

ξ1 =




0
0
0
0
0
1



 ξ2 =




0

−l0
0
−1
0
0



 ξ3 =




0

−l0
l1
−1
0
0



 .

To each link we attach a frame Li at the center of mass and aligned with
principle inertia axes of the link, as shown in the figure:

gsl1(0) =

[
I
(

0
0
r0

)

0 1

]
gsl2(0) =

[
I
(

0
r1
l0

)

0 1

]
gsl3(0) =

[
I
(0
l1+r2
l0

)

0 1

]
.

With this choice of link frames, the link inertia matrices have the general
form

Mi =





mi 0
mi

0 mi

0

0
Ixi 0

Iyi

0 Izi



 ,

where mi is the mass of the object and Ixi, Iyi, and Izi are the moments
of inertia about the x-, y-, and z-axes of the ith link frame.

172

To compute the manipulator inertia matrix, we first compute the body
Jacobians corresponding to each link frame. A detailed, but straightfor-
ward, calculation yields

J1 = Jbsl1(0) =




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0



 J2 = Jbsl2(0) =




−r1c2 0 0

0 0 0
0 −r1 0
0 −1 0

−s2 0 0
c2 0 0





J3 = Jbsl3(0) =





−l2c2−r2c23 0 0
0 l1s3 0
0 −r2−l1c3 −r2
0 −1 −1

−s23 0 0
c23 0 0



 .

The inertia matrix for the system is given by

M(θ) =




M11 M12 M13

M21 M22 M23

M31 M32 M33



 = JT1 M1J1 + JT2 M2J2 + JT3 M3J3.

The components of M are given by

M11 = Iy2s
2
2 + Iy3s

2
23 + Iz1 + Iz2c

2
2 + Iz3c

2
23

+m2r
2
1c

2
2 +m3(l1c2 + r2c23)

2

M12 = 0

M13 = 0

M21 = 0

M22 = Ix2 + Ix3 +m3l
2
1 +m2r

2
1 +m3r

2
2 + 2m3l1r2c3

M23 = Ix3 +m3r
2
2 +m3l1r2c3

M31 = 0

M32 = Ix3 +m3r
2
2 +m3l1r2c3

M33 = Ix3 +m3r
2
2.

Note that several of the moments of inertia of the different links do not
appear in this expression. This is because the limited degrees of freedom
of the manipulator do not allow arbitrary rotations of each joint around
each axis.

The Coriolis and centrifugal forces are computed directly from the
inertia matrix via the formula

Cij(θ, θ̇) =

n∑

k=1

Γijkθ̇k =
1

2

n∑

k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi

)
θ̇k.

A very messy calculation shows that the nonzero values of Γijk are given

173

by:

Γ112 = (Iy2 − Iz2 − m2r
2
1)c2s2 + (Iy3 − Iz3)c23s23

− m3(l1c2 + r2c23)(l1s2 + r2s23)

Γ113 = (Iy3 − Iz3)c23s23 − m3r2s23(l1c2 + r2c23)

Γ121 = (Iy2 − Iz2 − m2r
2
1)c2s2 + (Iy3 − Iz3)c23s23

− m3(l1c2 + r2c23)(l1s2 + r2s23)

Γ131 = (Iy3 − Iz3)c23s23 − m3r2s23(l1c2 + r2c23)

Γ211 = (Iz2 − Iy2 + m2r
2
1)c2s2 + (Iz3 − Iy3)c23s23

+ m3(l1c2 + r2c23)(l1s2 + r2s23)

Γ223 = −l1m3r2s3

Γ232 = −l1m3r2s3

Γ233 = −l1m3r2s3

Γ311 = (Iz3 − Iy3)c23s23 + m3r2s23(l1c2 + r2c23)

Γ322 = l1m3r2s3

Finally, we compute the effect of gravitational forces on the manipu-
lator. These forces are written as

N(θ, θ̇) =
∂V

∂θ
,

where V : Rn → R is the potential energy of the manipulator. For the
three-link manipulator under consideration here, the potential energy is
given by

V (θ) = m1gh1(θ) +m2gh2(θ) +m3gh3(θ),

where hi is the the height of the center of mass for the ith link. These
can be found using the forward kinematics map

gsli(θ) = e
bξ1θ1 . . . e

bξiθigsli(0),

which gives

h1(θ) = r0

h2(θ) = l0 − r1 sin θ2

h3(θ) = l0 − l1 sin θ2 − r2 sin(θ2 + θ3).

Substituting these expressions into the potential energy and taking the

174

derivative gives

N(θ, θ̇) =
∂V

∂θ
=




0

−(m2gr1 +m3gl1) cos θ2 −m3r2 cos(θ2 + θ3))
−m3gr2 cos(θ2 + θ3))



 .

(4.25)
This completes the derivation of the dynamics.

3.3 Robot dynamics and the product of exponentials

formula

The formulas and properties given in the last section hold for any me-
chanical system with Lagrangian L = 1

2 θ̇
TM(θ)θ̇ − V (θ). If the forward

kinematics are specified using the product of exponentials formula, then
it is possible to get more explicit formulas for the inertia and Coriolis ma-
trices. In this section we derive these formulas, based on the treatments
given by Brockett et al. [15] and Park et al. [87].

In addition to the tools introduced in Chapters 2 and 3, we will make
use of one additional operation on twists. Recall, first, that in so(3)
the cross product between two vectors ω1, ω2 ∈ R3 yields a third vector,
ω1×ω2 ∈ R3. It can be shown by direct calculation that the cross product
satisfies

(ω1 × ω2)
∧ = ω̂1ω̂2 − ω̂2ω̂1.

By direct analogy, we define the Lie bracket on se(3) as

[ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1.

A simple calculation verifies that the right-hand side of this equation has
the form of a twist, and hence [ξ̂1, ξ̂2] ∈ se(3).

If ξ1, ξ2 ∈ R6 represent the coordinates for two twists, we define the
bracket operation [·, ·] : R6 × R6 → R6 as

[ξ1, ξ2] =
(
ξ̂1ξ̂2 − ξ̂2ξ̂1

)∨
. (4.26)

This is a generalization of the cross product on R3 to vectors in R6.
The following properties of the Lie bracket are also generalizations of
properties of the cross product:

= −[ξ2, ξ1]

[ξ1, [ξ2, ξ3]] + [ξ2, [ξ3, ξ1]] + [ξ3, [ξ1, ξ2]] = 0.

A more detailed (and abstract) description of the Lie bracket operation
on se(3) is given in Appendix A. For this chapter we shall only need the
formula given in equation (4.26)

175

We now define some additional notation which we use in the sequel.
Let Aij ∈ R6×6 represent the adjoint transformation given by

Aij =






Ad−1

(eξj+1θj+1 · · · eξiθi)
i > j

I i = j

0 i < j.

(4.27)

Using this notation, the jth column of the body Jacobian for the ith link
is given by Adg−1

sli

Aijξj :

Ji(θ) = Adg−1
sli(0)

[
Ai1ξ1 · · · Aiiξi 0 · · · 0

]
.

We combine Adg−1
sli(0)

with the link inertia matrix by defining the trans-

formed inertia matrix for the ith link:

M′
i = AdT

g−1
sli(0)

Mi Adg−1
sli(0)

. (4.28)

The matrix M′
i represents the inertia of the ith link reflected into the

base frame of the manipulator.
Using these definitions, we can obtain formulas for the inertial quan-

tities which appear in the equation of motion. We state the results as a
proposition.

Proposition 4.3. Formulas for inertia and Coriolis matrices
Using the notation defined above, the inertia and Coriolis matrices for
an open-chain manipulator are given by

Mij(θ) =

n∑

l=max(i,j)

ξTi A
T
liM′

lAljξj

Cij(θ) =
1

2

n∑

k=1

(
∂Mij

∂θk
+
∂Mik

∂θj
− ∂Mkj

∂θi

)
θ̇k,

(4.29)

where

∂Mij

∂θk
=

n∑

l=max(i,j)

(
[Akiξi, ξk]

TATlkM′
lAljξj

+ ξTi A
T
liM′

lAlk[Akjξj , ξk]
)
. (4.30)

This proposition shows that all of the dynamic attributes of the ma-
nipulator can be determined directly from the joint twists ξi, the link
frames gsli(0), and the link inertia matrices Mi. The matrices Aij are
the only expressions in equations (4.29) and (4.30) which depend on the
current configuration of the manipulator.

176

Proof. The only term which needs to be calculated in order to prove
the proposition is ∂

∂θk
(Aljξj). For i ≥ j, let gij ∈ SE(3) be the rigid

transformation given by

gij =

{
e−

bξiθi . . . e−
bξj+1θj+1 i > j

I i = j,

so that Aij = Adgij
. Using this notation, if k is an integer such that

i ≥ k ≥ j, then gij = gikgkj . We now proceed to calculate ∂
∂θk

(Aljξj) for
i ≥ k ≥ j:

∂

∂θk
(Aljξj) =

(
∂

∂θk

(
glj ξ̂j g

−1
lj

))∨
=

(
∂glj
∂θk

ξ̂j g
−1
lj + glj ξ̂j

∂g−1
lj

∂θk

)∨

=
(
−gl,k ξ̂k gkj ξ̂j g−1

lj + glj ξ̂j g
−1
kj ξ̂k g

−1
lk

)∨

= Adglk

(
−ξ̂k gkj ξ̂j g−1

kj + gkj ξ̂j g
−1
kj ξ̂k

)∨

= Alk[Akjξj , ξk].

For all other values of k, ∂
∂θk

(Aljξj) is zero. The proposition now follows
by direct calculation.

Example 4.4. Dynamics of an idealized SCARA manipulator
Consider the SCARA manipulator shown in Figure 4.6. The joint twists
are given by

ξ1 =




0
0
0
0
0
1



 ξ2 =




l1
0
0
0
0
1



 ξ3 =




l1+l2

0
0
0
0
1



 ξ4 =




0
0
1
0
0
0



 .

Assuming that the link frames are initially aligned with the base frame
and are located at the centers of mass of the links, the transformed link
inertia matrices have the form

M′
i =

[
I 0
−p̂i I

] [
miI 0
0 I

] [
I p̂i
0 I

]
=

[
miI mip̂i
−mip̂i I

]
,

where pi is the location of the origin of the ith link frame relative to the
base frame S.

Given the joint twists ξi and transformed link inertiasM′
i, the dynam-

ics of the manipulator can be computed using the formulas in Proposi-
tion 4.3. This task is considerably simplified using the software described
in Appendix B, so we omit a detailed computation and present only the
final result. The inertia matrix M(θ) ∈ R4×4 is given by

M(θ) =





α+ β + 2γ cos θ2 β + γ cos θ2 δ 0
β + γ cos θ2 β δ 0

δ δ δ 0
0 0 0 m4



 ,

177

L4

x

z

S y

θ1

θ2

l0

θ3

θ4

l1 l2

L1

L2
L3

Figure 4.6: SCARA manipulator in its reference configuration.

where
α = Iz1 + r21m1 + l21m2 + l21m3 + l21m4

β = Iz2 + Iz3 + Iz4 + l22m3 + l22m4 +m2r
2
2

γ = l1l2m3 + l1l2m4 + l1m2r2

δ = Iz3 + Iz4.

The Coriolis matrix is given by

C(θ, θ̇) =





−γ sin θ2 θ̇2 −γ sin θ2 (θ̇1 + θ̇2) 0 0

γ sin θ2 θ̇1 0 0 0
0 0 0 0
0 0 0 0



 .

The only remaining term in the dynamics is the gravity term, which can
be determined by inspection since only θ4 affects the potential energy of
the manipulator. Hence,

N(θ, θ̇) =





0
0
0

m4g



 .

Friction and other nonconservative forces can also be included in N .

178

4 Lyapunov Stability Theory

In this section we review the tools of Lyapunov stability theory. These
tools will be used in the next section to analyze the stability properties
of a robot controller. We present a survey of the results that we shall
need in the sequel, with no proofs. The interested reader should consult
a standard text, such as Vidyasagar [118] or Khalil [49], for details.

4.1 Basic definitions

Consider a dynamical system which satisfies

ẋ = f(x, t) x(t0) = x0 x ∈ Rn. (4.31)

We will assume that f(x, t) satisfies the standard conditions for the exis-
tence and uniqueness of solutions. Such conditions are, for instance, that
f(x, t) is Lipschitz continuous with respect to x, uniformly in t, and piece-
wise continuous in t. A point x∗ ∈ Rn is an equilibrium point of (4.31) if
f(x∗, t) ≡ 0. Intuitively and somewhat crudely speaking, we say an equi-
librium point is locally stable if all solutions which start near x∗ (meaning
that the initial conditions are in a neighborhood of x∗) remain near x∗

for all time. The equilibrium point x∗ is said to be locally asymptotically
stable if x∗ is locally stable and, furthermore, all solutions starting near
x∗ tend towards x∗ as t → ∞. We say somewhat crude because the
time-varying nature of equation (4.31) introduces all kinds of additional
subtleties. Nonetheless, it is intuitive that a pendulum has a locally sta-
ble equilibrium point when the pendulum is hanging straight down and
an unstable equilibrium point when it is pointing straight up. If the pen-
dulum is damped, the stable equilibrium point is locally asymptotically
stable.

By shifting the origin of the system, we may assume that the equi-
librium point of interest occurs at x∗ = 0. If multiple equilibrium points
exist, we will need to study the stability of each by appropriately shifting
the origin.

Definition 4.1. Stability in the sense of Lyapunov
The equilibrium point x∗ = 0 of (4.31) is stable (in the sense of Lya-
punov) at t = t0 if for any ǫ > 0 there exists a δ(t0, ǫ) > 0 such that

‖x(t0)‖ < δ =⇒ ‖x(t)‖ < ǫ, ∀t ≥ t0. (4.32)

Lyapunov stability is a very mild requirement on equilibrium points.
In particular, it does not require that trajectories starting close to the
origin tend to the origin asymptotically. Also, stability is defined at a
time instant t0. Uniform stability is a concept which guarantees that the
equilibrium point is not losing stability. We insist that for a uniformly

179

stable equilibrium point x∗, δ in the Definition 4.1 not be a function of
t0, so that equation (4.32) may hold for all t0. Asymptotic stability is
made precise in the following definition:

Definition 4.2. Asymptotic stability
An equilibrium point x∗ = 0 of (4.31) is asymptotically stable at t = t0 if

1. x∗ = 0 is stable, and

2. x∗ = 0 is locally attractive; i.e., there exists δ(t0) such that

‖x(t0)‖ < δ =⇒ lim
t→∞

x(t) = 0. (4.33)

As in the previous definition, asymptotic stability is defined at t0.
Uniform asymptotic stability requires:

1. x∗ = 0 is uniformly stable, and

2. x∗ = 0 is uniformly locally attractive; i.e., there exists δ indepen-
dent of t0 for which equation (4.33) holds. Further, it is required
that the convergence in equation (4.33) is uniform.

Finally, we say that an equilibrium point is unstable if it is not stable.
This is less of a tautology than it sounds and the reader should be sure he
or she can negate the definition of stability in the sense of Lyapunov to get
a definition of instability. In robotics, we are almost always interested in
uniformly asymptotically stable equilibria. If we wish to move the robot
to a point, we would like to actually converge to that point, not merely
remain nearby. Figure 4.7 illustrates the difference between stability in
the sense of Lyapunov and asymptotic stability.

Definitions 4.1 and 4.2 are local definitions; they describe the behavior
of a system near an equilibrium point. We say an equilibrium point x∗

is globally stable if it is stable for all initial conditions x0 ∈ Rn. Global
stability is very desirable, but in many applications it can be difficult
to achieve. We will concentrate on local stability theorems and indicate
where it is possible to extend the results to the global case. Notions
of uniformity are only important for time-varying systems. Thus, for
time-invariant systems, stability implies uniform stability and asymptotic
stability implies uniform asymptotic stability.

It is important to note that the definitions of asymptotic stability do
not quantify the rate of convergence. There is a strong form of stability
which demands an exponential rate of convergence:

Definition 4.3. Exponential stability, rate of convergence
The equilibrium point x∗ = 0 is an exponentially stable equilibrium point
of (4.31) if there exist constants m,α > 0 and ǫ > 0 such that

‖x(t)‖ ≤ me−α(t−t0)‖x(t0)‖ (4.34)

180

(c) Unstable (saddle)

-4 4x

4

-4

ẋ

4

-4

ẋ

x-0.4 0.4

ẋ

0.4

-0.4
-4 4x

(a) Stable in the sense of Lyapunov

(b) Asymptotically stable

Figure 4.7: Phase portraits for stable and unstable equilibrium points.

for all ‖x(t0)‖ ≤ ǫ and t ≥ t0. The largest constant α which may be
utilized in (4.34) is called the rate of convergence.

Exponential stability is a strong form of stability; in particular, it im-
plies uniform, asymptotic stability. Exponential convergence is important
in applications because it can be shown to be robust to perturbations and
is essential for the consideration of more advanced control algorithms,
such as adaptive ones. A system is globally exponentially stable if the
bound in equation (4.34) holds for all x0 ∈ Rn. Whenever possible, we
shall strive to prove global, exponential stability.

4.2 The direct method of Lyapunov

Lyapunov’s direct method (also called the second method of Lyapunov)
allows us to determine the stability of a system without explicitly inte-
grating the differential equation (4.31). The method is a generalization
of the idea that if there is some “measure of energy” in a system, then
we can study the rate of change of the energy of the system to ascertain
stability. To make this precise, we need to define exactly what one means

181

by a “measure of energy.” Let Bǫ be a ball of size ǫ around the origin,
Bǫ = {x ∈ Rn : ‖x‖ < ǫ}.
Definition 4.4. Locally positive definite functions (lpdf)
A continuous function V : Rn×R+ → R is a locally positive definite func-
tion if for some ǫ > 0 and some continuous, strictly increasing function
α : R+ → R,

V (0, t) = 0 and V (x, t) ≥ α(‖x‖) ∀x ∈ Bǫ, ∀t ≥ 0. (4.35)

A locally positive definite function is locally like an energy function.
Functions which are globally like energy functions are called positive def-
inite functions:

Definition 4.5. Positive definite functions (pdf)
A continuous function V : Rn × R+ → R is a positive definite function if
it satisfies the conditions of Definition 4.4 and, additionally, α(p) → ∞
as p→∞.

To bound the energy function from above, we define decrescence as
follows:

Definition 4.6. Decrescent functions
A continuous function V : Rn × R+ → R is decrescent if for some ǫ > 0
and some continuous, strictly increasing function β : R+ → R,

V (x, t) ≤ β(‖x‖) ∀x ∈ Bǫ, ∀t ≥ 0 (4.36)

Using these definitions, the following theorem allows us to deter-
mine stability for a system by studying an appropriate energy function.
Roughly, this theorem states that when V (x, t) is a locally positive defi-
nite function and V̇ (x, t) ≤ 0 then we can conclude stability of the equi-
librium point. The time derivative of V is taken along the trajectories of
the system:

V̇
∣∣∣
ẋ=f(x,t)

=
∂V

∂t
+
∂V

∂x
f.

In what follows, by V̇ we will mean V̇ |ẋ=f(x,t).

Theorem 4.4. Basic theorem of Lyapunov
Let V (x, t) be a non-negative function with derivative V̇ along the trajec-
tories of the system.

1. If V (x, t) is locally positive definite and V̇ (x, t) ≤ 0 locally in x and
for all t, then the origin of the system is locally stable (in the sense
of Lyapunov).

2. If V (x, t) is locally positive definite and decrescent, and V̇ (x, t) ≤ 0
locally in x and for all t, then the origin of the system is uniformly
locally stable (in the sense of Lyapunov).

182

Table 4.1: Summary of the basic theorem of Lyapunov.

Conditions on Conditions on Conclusions

V (x, t) −V̇ (x, t)
1 lpdf ≥ 0 locally Stable
2 lpdf, decrescent ≥ 0 locally Uniformly stable
3 lpdf, decrescent lpdf Uniformly asymptotically

stable
4 pdf, decrescent pdf Globally uniformly

asymptotically stable

3. If V (x, t) is locally positive definite and decrescent, and −V̇ (x, t) is
locally positive definite, then the origin of the system is uniformly
locally asymptotically stable.

4. If V (x, t) is positive definite and decrescent, and −V̇ (x, t) is pos-
itive definite, then the origin of the system is globally uniformly
asymptotically stable.

The conditions in the theorem are summarized in Table 4.1.
Theorem 4.4 gives sufficient conditions for the stability of the origin

of a system. It does not, however, give a prescription for determining
the Lyapunov function V (x, t). Since the theorem only gives sufficient
conditions, the search for a Lyapunov function establishing stability of
an equilibrium point could be arduous. However, it is a remarkable fact
that the converse of Theorem 4.4 also exists: if an equilibrium point is
stable, then there exists a function V (x, t) satisfying the conditions of
the theorem. However, the utility of this and other converse theorems is
limited by the lack of a computable technique for generating Lyapunov
functions.

Theorem 4.4 also stops short of giving explicit rates of convergence of
solutions to the equilibrium. It may be modified to do so in the case of
exponentially stable equilibria.

Theorem 4.5. Exponential stability theorem
x∗ = 0 is an exponentially stable equilibrium point of ẋ = f(x, t) if and
only if there exists an ǫ > 0 and a function V (x, t) which satisfies

α1‖x‖2 ≤ V (x, t) ≤ α2‖x‖2

V̇ |ẋ=f(x,t) ≤ −α3‖x‖2

‖∂V
∂x

(x, t)‖ ≤ α4‖x‖

for some positive constants α1, α2, α3, α4, and ‖x‖ ≤ ǫ.

183

The rate of convergence for a system satisfying the conditions of The-
orem 4.5 can be determined from the proof of the theorem [102]. It can
be shown that

m ≤
(
α2

α1

)1/2

α ≥ α3

2α2

are bounds in equation (4.34). The equilibrium point x∗ = 0 is globally
exponentially stable if the bounds in Theorem 4.5 hold for all x.

4.3 The indirect method of Lyapunov

The indirect method of Lyapunov uses the linearization of a system to
determine the local stability of the original system. Consider the system

ẋ = f(x, t) (4.37)

with f(0, t) = 0 for all t ≥ 0. Define

A(t) =
∂f(x, t)

∂x

∣∣∣∣
x=0

(4.38)

to be the Jacobian matrix of f(x, t) with respect to x, evaluated at the
origin. It follows that for each fixed t, the remainder

f1(x, t) = f(x, t)−A(t)x

approaches zero as x approaches zero. However, the remainder may not
approach zero uniformly. For this to be true, we require the stronger
condition that

lim
‖x‖→0

sup
t≥0

‖f1(x, t)‖
‖x‖ = 0. (4.39)

If equation (4.39) holds, then the system

ż = A(t)z (4.40)

is referred to as the (uniform) linearization of equation (4.31) about the
origin. When the linearization exists, its stability determines the local
stability of the original nonlinear equation.

Theorem 4.6. Stability by linearization
Consider the system (4.37) and assume

lim
‖x‖→0

sup
t≥0

‖f1(x, t)‖
‖x‖ = 0.

Further, let A(·) defined in equation (4.38) be bounded. If 0 is a uniformly
asymptotically stable equilibrium point of (4.40) then it is a locally uni-
formly asymptotically stable equilibrium point of (4.37).

184

q

M

K

B

Figure 4.8: Damped harmonic oscillator.

The preceding theorem requires uniform asymptotic stability of the
linearized system to prove uniform asymptotic stability of the nonlinear
system. Counterexamples to the theorem exist if the linearized system is
not uniformly asymptotically stable.

If the system (4.37) is time-invariant, then the indirect method says
that if the eigenvalues of

A =
∂f(x)

∂x

∣∣∣∣
x=0

are in the open left half complex plane, then the origin is asymptotically
stable.

This theorem proves that global uniform asymptotic stability of the
linearization implies local uniform asymptotic stability of the original
nonlinear system. The estimates provided by the proof of the theorem
can be used to give a (conservative) bound on the domain of attraction
of the origin. Systematic techniques for estimating the bounds on the
regions of attraction of equilibrium points of nonlinear systems is an im-
portant area of research and involves searching for the “best” Lyapunov
functions.

4.4 Examples

We now illustrate the use of the stability theorems given above on a few
examples.

Example 4.5. Linear harmonic oscillator
Consider a damped harmonic oscillator, as shown in Figure 4.8. The
dynamics of the system are given by the equation

Mq̈ +Bq̇ +Kq = 0, (4.41)

185

where M , B, and K are all positive quantities. As a state space equation
we rewrite equation (4.41) as

d

dt

[
q
q̇

]
=

[
q̇

−(K/M)q − (B/M)q̇

]
. (4.42)

Define x = (q, q̇) as the state of the system.
Since this system is a linear system, we can determine stability by

examining the poles of the system. The Jacobian matrix for the system
is

A =

[
0 1

−K/M −B/M

]
,

which has a characteristic equation

λ2 + (B/M)λ+ (K/M) = 0.

The solutions of the characteristic equation are

λ =
−B ±

√
B2 − 4KM

2M
,

which always have negative real parts, and hence the system is (globally)
exponentially stable.

We now try to apply Lyapunov’s direct method to determine expo-
nential stability. The “obvious” Lyapunov function to use in this context
is the energy of the system,

V (x, t) =
1

2
Mq̇2 +

1

2
Kq2. (4.43)

Taking the derivative of V along trajectories of the system (4.41) gives

V̇ = Mq̇q̈ +Kqq̇ = −Bq̇2. (4.44)

The function −V̇ is quadratic but not locally positive definite, since it
does not depend on q, and hence we cannot conclude exponential sta-
bility. It is still possible to conclude asymptotic stability using Lasalle’s
invariance principle (described in the next section), but this is obviously
conservative since we already know that the system is exponentially sta-
ble.

The reason that Lyapunov’s direct method fails is illustrated in Fig-
ure 4.9a, which shows the flow of the system superimposed with the level
sets of the Lyapunov function. The level sets of the Lyapunov function
become tangent to the flow when q̇ = 0, and hence it is not a valid
Lyapunov function for determining exponential stability.

To fix this problem, we skew the level sets slightly, so that the flow of
the system crosses the level surfaces transversely. Define

V (x, t) =
1

2

[
q
q̇

]T [
K ǫM
ǫM M

] [
q
q̇

]
=

1

2
q̇Mq̇ +

1

2
qKq + ǫq̇Mq,

186

-10
10q

10

q̇

-10 q

10

q̇

-10
-10 10

(a) (b)

Figure 4.9: Flow of damped harmonic oscillator. The dashed lines are
the level sets of the Lyapunov function defined by (a) the total energy
and (b) a skewed modification of the energy.

where ǫ is a small positive constant such that V is still positive definite.
The derivative of the Lyapunov function becomes

V̇ = q̇Mq̈ + qKq̇ + ǫMq̇2 + ǫqMq̈

= (−B + ǫM)q̇2 + ǫ(−Kq2 −Bqq̇) = −
[
q
q̇

]T [
ǫK 1

2ǫB
1
2ǫB B − ǫM

] [
q
q̇

]
.

The function V̇ can be made negative definite for ǫ chosen sufficiently
small (see Exercise 11) and hence we can conclude exponential stability.
The level sets of this Lyapunov function are shown in Figure 4.9b.

This same technique is used in the stability proofs for the robot control
laws contained in the next section.

Example 4.6. Nonlinear spring mass system with damper
Consider a mechanical system consisting of a unit mass attached to a
nonlinear spring with a velocity-dependent damper. If x1 stands for the
position of the mass and x2 its velocity, then the equations describing the
system are:

ẋ1 = x2

ẋ2 = −f(x2)− g(x1).
(4.45)

Here f and g are smooth functions modeling the friction in the damper
and restoring force of the spring, respectively. We will assume that f, g
are both passive; that is,

σf(σ) ≥ 0 ∀σ ∈ [−σ0, σ0]

σg(σ) ≥ 0 ∀σ ∈ [−σ0, σ0]

187

and equality is only achieved when σ = 0. The candidate for the Lya-
punov function is

V (x) =
x2

2

2
+

∫ x1

0

g(σ) dσ.

The passivity of g guarantees that V (x) is a locally positive definite func-
tion. A short calculation verifies that

V̇ (x) = −x2f(x2) ≤ 0 when |x2| ≤ σ0.

This establishes the stability, but not the asymptotic stability of the ori-
gin. Actually, the origin is asymptotically stable, but this needs Lasalle’s
principle, which is discussed in the next section.

4.5 Lasalle’s invariance principle

Lasalle’s theorem enables one to conclude asymptotic stability of an equi-
librium point even when−V̇ (x, t) is not locally positive definite. However,
it applies only to autonomous or periodic systems. We will deal with the
autonomous case and begin by introducing a few more definitions. We
denote the solution trajectories of the autonomous system

ẋ = f(x) (4.46)

as s(t, x0, t0), which is the solution of equation (4.46) at time t starting
from x0 at t0.

Definition 4.7. ω limit set
The set S ⊂ Rn is the ω limit set of a trajectory s(·, x0, t0) if for every
y ∈ S, there exists a strictly increasing sequence of times tn such that

s(tn, x0, t0)→ y

as tn →∞.

Definition 4.8. Invariant set
The set M ⊂ Rn is said to be an (positively) invariant set if for all y ∈M
and t0 ≥ 0, we have

s(t, y, t0) ∈M ∀t ≥ t0.

It may be proved that the ω limit set of every trajectory is closed and
invariant. We may now state Lasalle’s principle.

Theorem 4.7. Lasalle’s principle
Let V : Rn → R be a locally positive definite function such that on the
compact set Ωc = {x ∈ Rn : V (x) ≤ c} we have V̇ (x) ≤ 0. Define

S = {x ∈ Ωc : V̇ (x) = 0}.

188

As t → ∞, the trajectory tends to the largest invariant set inside S;
i.e., its ω limit set is contained inside the largest invariant set in S. In
particular, if S contains no invariant sets other than x = 0, then 0 is
asymptotically stable.

A global version of the preceding theorem may also be stated. An
application of Lasalle’s principle is as follows:

Example 4.7. Nonlinear spring mass system with damper
Consider the same example as in equation (4.45), where we saw that with

V (x) =
x2

2

2
+

∫ x1

0

g(σ) dσ,

we obtained
V̇ (x) = −x2f(x2).

Choosing c = min(V (−σ0, 0), V (σ0, 0)) so as to apply Lasalle’s principle,
we see that

V̇ (x) ≤ 0 for x ∈ Ωc := {x : V (x) ≤ c}.
As a consequence of Lasalle’s principle, the trajectory enters the largest
invariant set in Ωc∩{x1, x2 : V̇ = 0} = Ωc∩{x1, 0}. To obtain the largest
invariant set in this region, note that

x2(t) ≡ 0 =⇒ x1(t) ≡ x10 =⇒ ẋ2(t) = 0 = −f(0)− g(x10),

where x10 is some constant. Consequently, we have that

g(x10) = 0 =⇒ x10 = 0.

Thus, the largest invariant set inside Ωc ∩ {x1, x2 : V̇ = 0} is the origin
and, by Lasalle’s principle, the origin is locally asymptotically stable.

There is a version of Lasalle’s theorem which holds for periodic sys-
tems as well. However, there are no significant generalizations for non-
periodic systems and this restricts the utility of Lasalle’s principle in
applications.

5 Position Control and Trajectory Tracking

In this section, we consider the position control problem for robot ma-
nipulators: given a desired trajectory, how should the joint torques be
chosen so that the manipulator follows that trajectory. We would like to
choose a control strategy which is robust with respect to initial condi-
tion errors, sensor noise, and modeling errors. We ignore the problems of
actuator dynamics, and assume that we can command arbitrary torques
which are exerted at the joints.

189

5.1 Problem description

We are given a description of the dynamics of a robot manipulator in the
form of the equation

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ, (4.47)

where θ ∈ Rn is the set of configuration variables for the robot and
τ ∈ Rn denotes the torques applied at the joints. We are also given a
joint trajectory θd(·) which we wish to track. For simplicity, we assume
that θd is specified for all time and that it is at least twice differentiable.

If we have a perfect model of the robot and θ(0) = θd(0), θ̇(0) = θ̇d(0),
then we may solve our problem by choosing

τ = M(θd)θ̈d + C(θd, θ̇d)θ̇d +N(θd, θ̇d).

Since both θ and θd satisfy the same differential equation and have the
same initial conditions, it follows from the uniqueness of the solutions of
differential equations that θ(t) = θd(t) for all t ≥ 0. This an example of
an open-loop control law: the current state of the robot is not used in
choosing the control inputs.

Unfortunately, this strategy is not very robust. If θ(0) 6= θd(0), then
the open-loop control law will never correct for this error. This is clearly
undesirable, since we almost never know the current position of a robot
exactly. Furthermore, we have no guarantee that if our starting configu-
ration is near the desired initial configuration that the trajectory of the
robot will stay near the desired trajectory for all time. For this reason,
we introduce feedback into our control law. This feedback must be chosen
such that the actual robot trajectory converges to the desired trajectory.
In particular, if our trajectory is a single setpoint, the closed-loop system
should be asymptotically stable about the desired setpoint.

There are several approaches for designing stable robot control laws.
Using the structural properties of robot dynamics, we will be able to
prove stability of these control laws for all robots having those properties.
Hence, we do not need to design control laws for a specific robot; as
long as we show that stability of a particular control algorithm requires
only those properties given in Lemma 4.2 on page 171, then our control
law will work for general open-chain robot manipulators. Of course, the
performance of a given control law depends heavily on the particular
manipulator, and hence the control laws presented here should only be
used as a starting point for synthesizing a feedback compensator.

5.2 Computed torque

Consider the following refinement of the open-loop control law presented
above: given the current position and velocity of the manipulator, cancel

190

all nonlinearities and apply exactly the torque needed to overcome the
inertia of the actuator,

τ = M(θ)θ̈d + C(θ, θ̇)θ̇ +N(θ, θ̇).

Substituting this control law into the dynamic equations of the manipu-
lator, we see that

M(θ)θ̈ = M(θ)θ̈d,

and since M(θ) is uniformly positive definite in θ, we have

θ̈ = θ̈d. (4.48)

Hence, if the initial position and velocity of the manipulator matches
the desired position and velocity, the manipulator will follow the desired
trajectory. As before, this control law will not correct for any initial
condition errors which are present.

The tracking properties of the control law can be improved by adding
state feedback. The linearity of equation (4.48) suggests the following
control law:

τ = M(θ)
(
θ̈d −Kv ė−Kpe

)
+ C(θ, θ̇)θ̇ +N(θ, θ̇) (4.49)

where e = θ − θd, and Kv and Kp are constant gain matrices. When
substituted into equation (4.47), the error dynamics can be written as:

M(θ) (ë+Kv ė+Kpe) = 0.

Since M(θ) is always positive definite, we have

ë+Kv ė+Kpe = 0. (4.50)

This is a linear differential equation which governs the error between the
actual and desired trajectories. Equation (4.49) is called the computed
torque control law.

The computed torque control law consists of two components. We
can write equation (4.49) as

τ = M(θ)θ̈d + Cθ̇ +N︸ ︷︷ ︸
τff

+M(θ) (−Kv ė−Kpe)︸ ︷︷ ︸
τfb

.

The term τff is the feedforward component. It provides the amount of
torque necessary to drive the system along its nominal path. The term
τfb is the feedback component. It provides correction torques to reduce
any errors in the trajectory of the manipulator.

Since the error equation (4.50) is linear, it is easy to choose Kv and
Kp so that the overall system is stable and e→ 0 exponentially as t→∞.

191

Moreover, we can choose Kv and Kp such that we get independent expo-
nentially stable systems (by choosingKp andKv diagonal). The following
proposition gives one set of conditions under which the computed torque
control law (4.49) results in exponential tracking.

Proposition 4.8. Stability of the computed torque control law
If Kp,Kv ∈ Rn×n are positive definite, symmetric matrices, then the
control law (4.49) applied to the system (4.47) results in exponential tra-
jectory tracking.

Proof. The error dynamics can be written as a first-order linear system:

d

dt

[
e
ė

]
=

[
0 I
−Kp −Kv

]

︸ ︷︷ ︸
A

[
e
ė

]
.

It suffices to show that each of the eigenvalues of A has negative real
part. Let λ ∈ C be an eigenvalue of A with corresponding eigenvector
v = (v1, v2) ∈ C2n, v 6= 0. Then,

λ

[
v1
v2

]
=

[
0 I
−Kp −Kv

] [
v1
v2

]
=

[
v2

−Kpv1 −Kvv2

]
.

It follows that if λ = 0 then v = 0, and hence λ = 0 is not an eigenvalue
of A. Further, if λ 6= 0, then v2 = 0 implies that v1 = 0. Thus, v1, v2 6= 0
and we may assume without loss of generality that ‖v1‖ = 1. Using this,
we write

λ2 = v∗1λ
2v1 = v∗1λv2

= v∗1(−Kpv1 −Kvv2) = −v∗1Kpv1 − λv∗1Kvv1,

where ∗ denotes complex conjugate transpose. Since α = v∗1Kpv1 > 0
and β = v∗1Kvv1 > 0, we have

λ2 + αλ+ β = 0 α, β > 0

and hence the real part of λ is negative.

The power of the computed torque control law is that it converts a
nonlinear dynamical system into a linear one, allowing the use of any of a
number of linear control synthesis tools. This is an example of a more gen-
eral technique known as feedback linearization, where a nonlinear system
is rendered linear via full-state nonlinear feedback. One disadvantage of
using feedback linearization is that it can be demanding (in terms of com-
putation time and input magnitudes) to use feedback to globally convert
a nonlinear system into a single linear system. For robot manipulators,
unboundedness of the inputs is rarely a problem since the inertia matrix
of the system is bounded and hence the control torques which must be
exerted always remain bounded. In addition, experimental results show
that the computed torque controller has very good performance charac-
teristics and it is becoming increasingly popular.

192

5.3 PD control

Another approach to controller synthesis for nonlinear systems is to de-
sign a linear controller based on the linearization of the system about an
operating point. Since the linearization of a system locally determines
the stability of the full system, this class of controllers is guaranteed to be
locally stable. In many situations, it is possible to prove global stability
for a linear controller by explicit construction of a Lyapunov function.

An example of this design methodology is a proportional plus deriva-
tive (PD) control law for a robot manipulator. In its simplest form, a PD
control law has the form

τ = −Kv ė−Kpe, (4.51)

where Kv and Kp are positive definite matrices and e = θ−θd. Since this
control law has no feedforward term, it can never achieve exact tracking
for non-trivial trajectories. A common modification is to add an inte-
gral term to eliminate steady-state errors. This introduces additional
complications since care must be taken to maintain stability and avoid
integrator windup.

Before adding a feedforward term, we first show that the PD controller
gives asymptotic setpoint stabilization.

Proposition 4.9. If θ̇d ≡ 0 and Kv,Kp > 0, the control law (4.51)
applied to the system (4.47) renders the equilibrium point θ = θd globally
asymptotically stable.

Proof. For θd ≡ 0, the closed-loop system is

M(θ)θ̈ + C(θ, θ̇)θ̇ +Kv θ̇ +Kp(θ − θd) = 0. (4.52)

Without loss of generality, we assume that θd = 0 (if not, redefine θ′ =
θ − θd). We choose the total energy of the system as our Lyapunov
function,

V (θ, θ̇) =
1

2
θ̇TM(θ)θ̇ +

1

2
θTKpθ.

The function V is (globally) positive definite and decresent. Evaluating
V̇ along trajectories of (4.52),

V̇ (θ, θ̇) = θ̇TMθ̈ +
1

2
θ̇T Ṁ θ̇ + θ̇TKpθ

= −θ̇TKv θ̇ +
1

2
θ̇T (Ṁ − 2C)θ̇,

and since Ṁ − 2C is skew-symmetric, we have

V̇ = −θ̇TKv θ̇.

193

Although Kv is positive definite, the function V̇ is only negative semi-
definite, since V̇ = 0 for θ̇ = 0 and θ 6= 0. Hence from Lyapunov’s basic
theorem, we can concluded only stability of the equilibrium point.

To check for asymptotic stability, we appeal to Lasalle’s principle.
The set S for which V̇ ≡ 0 is given by

S = {(θ, θ̇) : θ̇ ≡ 0}.

To find the largest invariant set contained in S, we substitute θ̇ ≡ 0 into
the closed loop equations 4.52. This gives

Kpθ = 0

(recalling that θd = 0) and since Kp is positive definite, it follows that the
largest invariant set contained within S is the single point θ = 0. Hence,
the equilibrium point θ = 0 is asymptotically stable.

Since we are primarily interested in tracking, we consider a modified
version of the PD control law:

τ = M(θ)θ̈d + C(θ, θ̇)θ̇d +N(θ, θ̇)−Kv ė−Kpe (4.53)

We call this controller the augmented PD control law. Note that the sec-
ond term in equation (4.53) is different from the Coriolis term C(θ, θ̇)θ̇.
The reason for this difference is found in the proof of the following theo-
rem.

Proposition 4.10. Stability of the PD control law
The control law (4.53) applied to the system (4.47) results in exponential
trajectory tracking if Kv,Kp > 0.

Proof. The closed-loop system is

M(θ)ë+ C(θ, θ̇)ė+Kv ė+Kpe = 0. (4.54)

As in the proof of the previous proposition, using the energy of the system
as a Lyapunov function does not allow us to conclude exponential stability
because V̇ is only negative semi-definite. Furthermore, since the system is
time-varying (due to the θd(·) terms), we cannot apply Lasalle’s principle.

To show exponential stability, we adopt the same approach as with
the spring mass system of the previous section. Namely, we skew the level
sets of the energy function by choosing the Lyapunov function candidate

V (e, ė, t) =
1

2
ėTM(θ)ė+

1

2
eTKpe+ ǫeTM(θ)ė,

194

which is positive definite for ǫ sufficiently small since M(θ) > 0 and
Kp > 0. Evaluating V̇ along trajectories of (4.54):

V̇ = ėTMë+
1

2
ėT Ṁ ė+ ėTKpe+ ǫėTMė+ ǫeT

(
Më+ Ṁ ė

)

= −ėT (Kv − ǫM)ė+
1

2
ėT (Ṁ−2C)ė+ ǫeT

(
−Kpe−Kv ė−Cė+Ṁ ė

)

= −ėT (Kv − ǫM)ė− ǫeTKpe+ ǫeT (−Kv +
1

2
Ṁ)ė

Choosing ǫ > 0 sufficiently small insures that V̇ is negative definite (see
Exercise 11) and hence the system is exponentially stable using Theo-
rem 4.5.

If θ̇d ≡ 0, i.e., we wish to stabilize a point, the control law (4.53) sim-
plifies to the original PD control law (4.51). We also note that asymptotic
tracking requires exact cancellation of friction and gravity forces and re-
lies on accurate models of these quantities as well as the manipulator
inertia matrix. In practice, errors in modeling will result in errors in
tracking.

A further difficulty in using the PD control law is choosing the gains
Kp and Kv. The linearization of the system about a given operating
point θ0 gives error dynamics of the form

M(θ0)ë+Kv ė+Kpe = 0.

Since this is a linear system, it is possible to choose Kv and Kp to achieve
a given performance specification using linear control theory. However,
if we are tracking a trajectory, then there is no guarantee that we will
remain near θ0 and the chosen gains may not be appropriate. In practice,
one can usually get reasonable results by choosing the gains based on
the linearization about an equilibrium point in the middle of the robot’s
workspace.

5.4 Workspace control

Suppose we are given a path gd(t) ∈ SE(3) which represents the desired
configuration of the end-effector as a function of time. One way to move
the manipulator along this path is to solve the inverse kinematics prob-
lem at each instant in time and generate a desired joint angle trajectory
θd(t) ∈ Q such that g(θd(t)) = gd(t). The methods of the previous sec-
tions can then be used to generate a feedback controller which follows
this path.

There are several disadvantages to solving the feedback control prob-
lem in this manner. Since solving the inverse kinematics problem is a
time-consuming task, systems in which gd is specified in real-time must

195

use powerful computers to compute θd at a rate suitable for control.
Furthermore, it may be difficult to choose the feedback gains in joint
space in a meaningful way, since the original task was given in terms of
the end-effector trajectory. For example, a joint-space, computed torque
controller with diagonal gain matrices (Kp and Kv) will generate a de-
coupled response in joint space, resulting in straight line trajectories in
θ if the setpoint of the manipulator is changed. However, due to the
nonlinear nature of the kinematics, this will not generate a straight line
trajectory in SE(3). For many tasks, this type of behavior is undesirable.

To overcome these disadvantages, we consider formulating the prob-
lem directly in end-effector coordinates. In doing so, we will eliminate the
need to solve the inverse kinematics and also generate controllers whose
gains have a more direct connection with the task performance. However,
in order to use the tools developed in Section 4, we must choose a set of
local coordinates for SE(3), such as parameterizing orientation via Euler
angles. This limits the usefulness of the technique somewhat, although
for many practical applications this limitation is of no consequence. This
approach to writing controllers is referred to as workspace control, since
x represents the configuration of the end-effector in the workspace of the
manipulator.

Let f : Q→ Rp be a smooth and invertible mapping between the joint
variables θ ∈ Q and the workspace variables x ∈ Rp. In particular, this
requires that n = p so that the number of degrees of freedom of the robot
equals the number of workspace variables x. We allow for the possibility
that p < 6, in which case the workspace variables may only give a partial
parameterization of SE(3). An example of this situation is the SCARA
robot, for which the position of the end-effector and its orientation with
respect to the z-axis form a natural set of coordinates for specifying a
task.

The dynamics of the manipulator in joint space has the form

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ,

where τ is the vector of joint torques and M , C, and N describe the
dynamic parameters of the system, as before.

We can rewrite the dynamics in terms of x ∈ Rp by using the Jacobian
of the mapping f : θ 7→ x,

ẋ = J(θ)θ̇ J(θ) =
∂f

∂θ
.

Note that J is the Jacobian of the mapping f : Q → Rp and not the
manipulator Jacobian. Under the assumption that f is smooth and in-
vertible, we can write

θ̇ = J−1ẋ and θ̈ = J−1ẍ+
d

dt
(J−1)ẋ.

196

We can now substitute these expressions into the manipulator dynamics
and pre-multiply by J−T := (J−1)T to obtain

J−TM(θ)J−1ẍ+

(
J−TC(θ, θ̇)J−1 + J−TM(θ)

d

dt
(J−1)

)
ẋ

+ J−TN(θ, θ̇) = J−T τ.

We can write this in a more familiar form by defining

M̃ = J−TMJ−1

C̃ = J−T
(
CJ−1 +M

d

dt

(
J−1

))

Ñ = J−TN

F = J−T τ,

in which case the dynamics become

M̃(θ)ẍ+ C̃(θ, θ̇)ẋ+ Ñ(θ, θ̇) = F. (4.55)

This equation represents the dynamics in terms of the workspace coordi-
nates x and the robot configuration θ. We call M̃ , C̃, and Ñ the effective
parameters of the system. They represent the dynamics of the system as
viewed from the workspace variables. Since f is locally invertible, we can
in fact eliminate θ from these equations, and we see that equation (4.55)
is nothing more than Lagrange’s equations relative to the generalized co-
ordinates x. However, since for most robots we measure θ directly and
compute x via the forward kinematics, it is convenient to leave the θ
dependence explicit.

Equation (4.55) has the same basic structure as the dynamics for an
open-chain manipulator written in joint coordinates. In order to exploit
this structure in our control laws, we must verify that some of the prop-
erties which we used in proving stability of controllers are also satisfied.
The following lemma verifies that this is indeed the case.

Lemma 4.11. Structural properties of the workspace dynamics
Equation (4.55) satisfies the following properties:

1. M̃(θ) is symmetric and positive definite.

2. ˙̃M − 2C̃ ∈ Rn×n is a skew-symmetric matrix.

Proof. Since J is an invertible matrix, property 1 follows from its defini-

tion. To show property 2, we calculate the ˙̃M − 2C̃:

˙̃M − 2C̃ = J−T (˙̃M − 2C̃)J−1 +
d

dt
(J−T)M̃J−1 − J−T M̃

d

dt
(J−1).

197

A direct calculation shows that this matrix is indeed skew-symmetric.

These two properties allow us to immediately extend the control laws
in the previous section to workspace coordinates. For example, the com-
puted torque control law becomes

F = M̃(θ) (ẍd −Kv ė−Kpe) + C(θ, θ̇)ẋ+N(θ, θ̇)

τ = JTF,

where xd is the desired workspace trajectory and e = x − xd is the
workspace error. The proof of stability for this control law is identi-
cal to that given previously. Namely, using the fact that M(θ) is positive
definite, we can write the workspace error dynamics as

ë+Kv ė+Kpe = 0

which is again a linear differential equation whose stability can be verified
directly. The PD control law can be similarly extended to workspace
coordinates.

The advantage of writing the control law in this fashion is that the
matrices Kv and Kp now specify the gains directly in workspace coordi-
nates. This simplifies the task of choosing the gains that are needed to
accomplish a specific task. Furthermore, it eliminates the need to solve
for the inverse mapping f−1 in order to control the robot. Instead, we
only have to calculate the Jacobian matrix for f and its (matrix) inverse.

Notice that when the manipulator approaches a singular configuration
relative to the coordinates x, the effective inertia M̃ gets very large. This
is an indication that it is difficult to move in some directions and hence
large forces produce very little motion. It is important to note that this
singularity is strictly a function of our choice of parameterization. Such
singularities never appear in the joint space of the robot.

Example 4.8. Comparison of joint space and workspace con-
trollers
To illustrate some of the differences between implementing a controller
in joint space versus workspace, we consider the control of a planar two
degree of freedom robot. We take as our workspace variables the xy
position of the end-effector.

Figure 4.10 shows the step response of a computed torque control law
written in joint coordinates. Note that the trajectory of the end-effector,
shown on the right, follows a curved path. The time response of the joint
trajectories is a classical linear response for an underdamped mechanical
system.

Figure 4.11 shows the step response of a computed torque control law
written in workspace coordinates. Now the trajectory of the end-effector,
including the overshoot, follows a straight line in the workspace and a
curved line in the joint space.

198

Trajectory in joint coordinates

0 0.5 1 1.5 2

start

desired

overshoot

0

0.5

1

1.5

2

-0.5

-0.5

overshoot

0

0.5

1

1.5

2

0 0.5 1 1.5 2

Trajectory in Cartesian coordinates

-0.5
-0.5

desired

start

Joint space trajectory versus time

θ2
0

1

2

0 1 2

θ1

Work space trajectory versus time

0

1

2

0 1 2

x
y

Figure 4.10: Step response of a joint space, computed torque controller.

overshoot

0

0.5

1

1.5

2

-0.5 0 0.5 1 1.5 2

start

-0.5

Trajectory in joint coordinates

desired

overshoot

0

0.5

1

1.5

2

0 0.5 1 1.5 2

start

Trajectory in Cartesian coordinates

-0.5

-0.5

desired

Joint space trajectory versus time

θ2
1

2

0 1 2

θ1

0

Work space trajectory versus time

0

1

2

0 1 2

x
y

Figure 4.11: Step response of a workspace, computed torque controller.

199

6 Control of Constrained Manipulators

In this short section, we provide a brief treatment of the control of con-
strained manipulators. A more thorough development is given in Chap-
ter 6.

6.1 Dynamics of constrained systems

Consider a problem in which we wish to move the tip of a robot along a
surface and apply a force against that surface. For simplicity, we assume
the surface is frictionless, although the analysis presented here can be
readily extended to the more general case. We suppose that the surface
we wish to move along can be described by a set of independent, smooth
constraints

hj(θ1, . . . , θn) = 0 j = 1, . . . , k, (4.56)

and that there exists a smooth, injective map f : Rn−k → Rn such that

hj(f1(φ), · · · , fn(φ)) = 0. (4.57)

That is, φ ∈ Rn−k parameterizes the allowable motion on the surface and
θ = f(φ) corresponds to a configuration in which the robot is in contact
with the surface.

The control task is to follow a given trajectory φd(t) while applying a
force against the surface. Since the surface is represented in joint space
as the level set of the map h(θ) = 0, the normal vectors to this surface
are given by the span of the gradients of ∇hi. (Since the surface is n− k
dimensional, the dimension of the space of normal vectors is k.) Any
torques of the form

τN =
∑

λj∇hj(θ) (4.58)

correspond to normal forces applied against the surface. In the absence
of friction, the work done by these torques is given by

τN · θ̇ =
∑

λi∇hi · θ̇ =
∑

λi

(
∂hi
∂θ

θ̇

)

=
∑

λi
d

dt
(h(θ)) = 0.

Hence the normal forces do no work on the system and therefore cause no
motion in the system. We assume that a desired normal force, specified
by λ1(t), . . . , λk(t), is given as part of the task description.

If the robot remains in contact with the surface, as desired, then the
dynamics of the manipulator can be written in terms of φ. Differentiating

200

θ = f(φ), we have

θ̇ =
∂f

∂φ
φ̇

θ̈ =
∂f

∂φ
φ̈+

d

dt

(
∂f

∂φ

)
φ̇.

(4.59)

These equations can be substituted into the robot equations of motion,

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ

to yield

M(θ)
∂f

∂φ
φ̈+

(
C(θ, θ̇)

∂f

∂φ
+M(θ)

d

dt

(
∂f

∂φ

))
φ̇+N(θ, θ̇) = τ, (4.60)

where we have left M , C, and N in terms of θ to simplify notation.
Equation (4.60) can be made symmetric by multiplying both sides by

∂f
∂φ

T
. Letting J = ∂f

∂φ (φ), we define

M̃(φ) = JTM(f(φ))J

C̃(φ, φ̇) = JT
(
C(f(φ), Jφ̇)J +M(f(φ))J̇

)

Ñ(φ, φ̇) = JTN(f(φ), Jφ̇)

F = JT τ.

(4.61)

Using these definitions, the projected equations of motion can be written
as

M̃(φ)φ̈+ C̃(φ, φ̇)φ̇+ Ñ(φ, φ̇) = F. (4.62)

This equation has the same form as the equation for an unconstrained
manipulator. We shall show in Chapter 6 that equation (4.62) also sat-
isfies the properties in Lemma 4.2. This is not particularly surprising
since the coordinates φ were chosen to be a set of generalized coordinates
under the assumption that the robot maintains contact with the surface.

It is important to keep in mind that equation (4.62) represents the
dynamics of the system only along the surface given by the level sets
h(θ) = 0. By pre-multiplying by JT , we have eliminated the information
about the forces of constraint. For many applications, we are interested
in regulating the forces of constraint and hence we must use the full
equations of motion given in equation (4.60).

6.2 Control of constrained manipulators

The control task for a constrained robot system is to simultaneously reg-
ulate the position of the system along the constraint surface and regulate
the forces of the system applied against this surface. In terms of analyz-
ing stability, it is enough to analyze only the motion along the surface,

201

since no movement occurs perpendicular to the surface. Of course, im-
plicit in this point of view is that we maintain contact with the surface.
If the manipulator is not physically constrained, this may require that
we regulate the forces so as to insure that we are always pushing against
the surface and never pulling away from it.

In this section we show how to extend the computed torque formalism
presented earlier to regulate the position and force of the manipulator.
We give only a sketch of the approach, leaving a more detailed discussion
until Chapter 6, where we shall see that hybrid position/force control is
just one example of the more general problem of controlling single and
multiple robots interacting with each other and their environment.

We take as given a path on the constraint surface, specified by φd(t),
and a normal force to be applied against the surface, specified by the
Lagrange multipliers λ1(t), . . . , λk(t) as in equation (4.58). Since we are
interested in regulating the force applied against the constraint, it is
important to insure that the position portion of the controller does not
push against the constraint. Define

τφ = M(θ)
∂f

∂φ
(φ̈d −Kv ėφ −Kpeφ)

+

(
C(θ, θ̇)

∂f

∂φ
+M(θ)

d

dt

(
∂f

∂φ

))
φ̇+N(θ, θ̇),

where eφ = φ− φd. This is the torque required to move the manipulator
along the surface while applying no force against the surface. In other
words, if we apply τ = τφ and remove the constraint completely, the
manipulator will follow the correct path, as if the constraint were present.

To apply the appropriate normal forces, we simply add τN as defined
in equation (4.58) to τφ. Since τN is in the normal direction to the
constraint, it does not affect the position portion of the controller. Of
course, this requires that the constraint surface actually be present to
resist the normal forces applied to it. The complete control law is given
by

τ = τφ +

k∑

i=1

λi(t)∇hi (4.63)

where τφ is given above. We defer the analysis and proof of convergence
for this control law until Chapter 6.

As in the previous control laws, the force control law presented here
relies on accurate models of the robot and the surface. In particular, we
note that the applied normal force does not use feedback to correct for
model error, sensor noise, or other non-ideal situations.

202

θ1

θ2

α
s

l

n

q

Figure 4.12: Planar manipulator moving in a slot.

6.3 Example: A planar manipulator moving in a slot

As a simple example of a constrained manipulator, consider the control of
a two degree of freedom, planar manipulator whose end-effector is forced
to lie in a slot, as shown in Figure 4.12. This system resembles a slider-
crank mechanism, except that we are allowed to apply torques on both
revolute joints, allowing us to control both the motion of the slider as
well as the force applied against the slot. This example is easily adapted
to a robot pushing against a wall, in which case the forces against the
slot must always be pointed in a preferred direction.

We take the slot to be a straight line passing through the point q =
(l, 0) and making an angle α with respect to the x-axis of the base frame.
The vector normal to the direction of the slot is given by

n =

[
sinα
− cosα

]
,

and the slot can be described as the set of all points p ∈ R2 such that
(p− q) · n = 0.

The constraint on the manipulator is obtained by requiring that the
position of the end-effector remain in the slot. Letting p(θ) ∈ R2 represent
the position of the tool frame, this constraint becomes

h(θ) =

(
p(θ)−

[
l
0

])
·
[

sinα
− cosα

]
= 0.

Substituting the forward kinematics of the manipulator yields

h(θ) = (l1 cos θ1 + l2 cos(θ1 + θ2)− l) sinα

− (l1 sin θ1 + l2 sin(θ1 + θ2)) cosα

= −l1 sin(θ1 − α)− l2 sin(θ1 + θ2 − α)− l sinα.

203

The gradient of the constraint, which gives the direction of the normal
force, is given by

∇h(θ) =

[
−l1 cos(θ1 − α)− l2 cos(θ1 + θ2 − α)

−l2 cos(θ1 + θ2 − α)

]
.

Note that this is the direction of the normal force in joint coordinates.
That is, joint torques applied in this direction will cause no motion, only
forces against the side of the slot.

To parameterize the allowable motion along the slot, we let s ∈ R

represent the position along the slot, with s = 0 denoting the point
q = (l, 0). Finding a function f(s) such that h(f(s)) = 0 involves solving
the inverse kinematics of the manipulator: given the position along the
slot, we must find joint angles which achieve that position.

If the end of the manipulator is at a position s along the slot, then
the xy coordinates of the end-effector are

x(s) = l + s cosα

y(s) = s sinα.

Solving the inverse kinematics (see Chapter 3, Section 3) and assuming
the elbow down solution, we have

f(s) =

[
θ1(s)
θ2(s)

]
=




tan−1

(
s sinα
l+s cosα

)
+ cos−1

(
s2+2ls cosα+l2+l21−l22
2l1

√
s2+2ls cosα+l2

)

π + cos−1
(
l21+l

2
2−s2−2ls cosα−l2

2l1l2

)



 .

The Jacobian of the mapping is given by

J =





−(s+l cosα)(s2+2ls cosα+l2−l21+l22)

2l1(s2+2ls cosα+l2)
3
2

r
1− (s2+2ls cos α+l2+l21−l22)

4l21(s2+2ls cos α+l2)

+ l sinα
s2+l2+2ls cosα

2(s+l cosα)√
4l21l

2
2−(s2+2ls cosα+l2−l21−l22)2





(after some simplification).
This matrix can now be used to compute the equations of motion and

derive an appropriate control law. In particular, the computed torque
controller has the form

τ = M(θ)J (s̈d −Kv ės −Kpes) +
(
C(θ, θ̇)J +M(θ)J̇

)
ṡ+ λn,

where es = s − sd; λ is the desired force against the slot; Kv,Kp ∈ R

are the gain and damping factors; and M and C are the generalized
inertial and Coriolis matrices. The inertial parameters were calculated in
Section 2.3 and are given by

M(θ) =

[
α+βc2 δ+ 1

2βc2
δ+ 1

2βc2 δ

]
C(θ, θ̇) =

[
− 1

2βs2θ̇2 − 1
2βs2(θ̇1+θ̇2)

1
2βs2θ̇1 0

]
,

204

where
α = Iz1 + Iz2 +m1r

2
1 +m2(l

2
1 + r22)

β = m2l1l2

δ = Iz2 +m2r
2
2.

It is perhaps surprising that such a simple problem can have such an
unwieldy solution. The difficulty is that we have cast the entire problem
into the joint space of the manipulator, where the constraint θ = f(s) is
a very complex looking curve.

A better way of deriving the equations of motion for this system is to
rewrite the dynamics of the system in terms of workspace variables which
describe the position of the end-effector (see Exercise 12). Once written
in this way, the constraint that the end of the manipulator remain in the
slot is a very simple one. This is the basic approach used in Chapter 6,
where we present a general framework which incorporates this example
and many other constrained manipulation systems.

205

7 Summary

The following are the key concepts covered in this chapter:

1. The equations of motion for a mechanical system with Lagrangian
L = T (q, q̇)− V (q) satisfies Lagrange’s equations:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= Υi,

where q ∈ Rn is a set of generalized coordinates for the system and
Υ ∈ Rn represents the vector of generalized external forces.

2. The equations of motion for a rigid body with configuration g(t) ∈
SE(3) are given by the Newton-Euler equations:

[
mI 0
0 I

] [
v̇b

ω̇b

]
+

[
ωb ×mvb
ωb × Iωb

]
= F b,

where m is the mass of the body, I is the inertia tensor, and
V b = (vb, ωb) and F b represent the instantaneous body velocity
and applied body wrench.

3. The equations of motion for an open-chain robot manipulator can
be written as

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = τ

where θ ∈ Rn is the set of joint variables for the robot and τ ∈ Rn

is the set of actuator forces applied at the joints. The dynamics of
a robot manipulator satisfy the following properties:

(a) M(θ) is symmetric and positive definite.

(b) Ṁ − 2C ∈ Rn×n is a skew-symmetric matrix.

4. An equilibrium point x∗ for the system ẋ = f(x, t) is locally asymp-
totically stable if all solutions which start near x∗ approach x∗ as
t → ∞. Stability can be checked using the direct method of Lya-
punov, by finding a locally positive definite function V (x, t) ≥ 0
such that −V̇ (x, t) is a locally positive definite function along tra-
jectories of the system. In situations in which −V̇ is only positive
semi-definite, Lasalle’s invariance principle can be used to check
asymptotic stability. Alternatively, the indirect method of Lyapunov
can be employed by examining the linearization of the system, if
it exists. Global exponential stability of the linearization implies
local exponential stability of the full nonlinear system.

206

5. Using the form and structure of the robot dynamics, several control
laws can be shown to track arbitrary trajectories. Two of the most
common are the computed torque control law,

τ = M(θ)(θ̈d +Kv ė+Kpe) + C(θ, θ̇)θ̇ +N(θ, θ̇),

and an augmented PD control law,

τ = M(θ)θ̈d + C(θ, θ̇)θ̇d +N(θ, θ̇) +Kv ė+Kpe.

Both of these controllers result in exponential trajectory tracking of
a given joint space trajectory. Workspace versions of these control
laws can also be derived, allowing end-effector trajectories to be
tracked without solving the inverse kinematics problem. Stability
of these controllers can be verified using Lyapunov stability.

8 Bibliography

The Lagrangian formulation of dynamics is classical; a good treatment
can be found in Rosenberg [99] or Pars [89]. Its application to the dy-
namics of a robot manipulator can be found in most standard textbooks
on robotics, for example [2, 21, 35, 52, 110].

The geometric formulation of the equations of motion for kinematic
chains presented in Section 3.3 is based on the recent work of Brockett,
Stokes, and Park [15, 87]. This is closely related to the spatial operator
algebra formulation of Rodriguez, Jain, and Kreutz-Delgado [45, 98], in
which the tree-like nature of the system is more fully exploited in com-
puting inertial properties of the system.

The literature on control of robot manipulators is vast. An excellent
treatment, covering many of the different approaches to robot control, is
given by Spong and Vidyasagar [110]. The collection [109] also provides
a good survey of recent research in this area. The modified PD control
law presented in Section 5 was originally formulated by Koditschek [51].
For a survey of manipulator control using exact linearization techniques,
see Kreutz [53]. The use of skew terms in Lyapunov functions to prove
exponential stability for PD controllers has been pointed out, for example,
by Wen and Bayard [120].

207

9 Exercises

1. Derive the equations of motion for the systems shown below.

θ

x

y

θ1

m1g

m2g

l2

l1

θ2

(a) (b)

(a) Pendulum on a wire: an idealized planar pendulum whose
pivot is free to slide along a horizontal wire. Assume that the
top of the pendulum can move freely on the wire (no friction).

(b) Double pendulum: two masses connected together by massless
links and revolute joints.

2. Compute the inertia tensor for the objects shown below.

a

b
c h

r

(a) Ellipsoid (b) Cylinder

3. Transformation of the generalized inertia matrix
Show that under a change of body coordinate frame from B to C,
the generalized inertia matrix for a rigid body is given by

Mc = AdTgbc
Mb Adgbc

=

[
mI mRTbcp̂bcRbc

−mRTbcp̂bcRbc RTbc(I −mp̂2
bc)Rbc

]
,

where gbc denotes the rigid motion taking C to B, and Mb and
Mc are the generalized inertia matrices expressed in frame B and
frame C.

4. Show that Euler’s equation written in spatial coordinates is given
by

I ′ω̇s + ωs × I ′ωs = τ,

208

where I ′ = RIRT and τ is the torque applied to the center of mass
of the rigid body, written in spatial coordinates.

5. Calculate the Newton-Euler equations in spatial coordinates.

6. Show that it is possible to choose M and C such that the Newton-
Euler equations can be written as

MV̇ b + C(g, ġ)V b = F b,

where M > 0 and Ṁ − 2C is a skew-symmetric matrix.

7. Verify that the equations of motion for a planar, two-link manipula-
tor, as given in equation (4.11), satisfy the properties of Lemma 4.2.

8. Passivity of robot dynamics
Let H = T + V be the total energy for a rigid robot. Show that if
Ṁ−2C is skew-symmetric, then energy is conserved, i.e., Ḣ = θ̇ ·τ .

9. Show that the workspace version of the PD control law results in
exponential trajectory tracking.

10. Show that the control law

τ = M(θ)(θ̈d + λė) + C(θ, θ̇)(θ̇d + λe) +N(θ, θ̇) +Kv ė+Kpe

results in exponential trajectory tracking when λ ∈ R is positive
and Kv,Kp ∈ Rn×n are positive definite [107].

11. Show that the matrix
[
ǫA ǫB
ǫBT C + ǫD

]

is positive definite if A and C are symmetric, positive definite, and
ǫ > 0 is chosen sufficiently small.

12. Hybrid control using workspace coordinates
Consider the constrained manipulation problem described in Sec-
tion 6.3. Let pst(θ) ∈ R2 be the coordinates of the end-effector
and let w = p(θ) represent a set of workspace coordinates for the
system.

(a) Compute the matrix J(θ) which is used to convert the joint
space dynamics into workspace dynamics (as in Section 5.4).

(b) Compute the constraint function in terms of the workspace
variables and find a parameterization f : R→ R2 which maps
the slot position to the workspace coordinates. Let K(s) rep-
resent the Jacobian of the mapping w = f(s).

209

(c) Write the dynamics of the constrained system in terms of ω and
its derivatives, the dynamic parameters of the unconstrained
system, and the matrices J(θ) and K(s).

(d) Verify that the equations of motion derived in step (c) are the
same as the equations of motion derived in Section 6.3. In
particular, show that τN and the inertia matrix M̃(s) are the
same in both cases.

210

Chapter 5

Multifingered Hand

Kinematics

In this chapter, we study the kinematics of a multifingered robot hand
grasping an object. Given a description of the fingers and the object, we
derive the relationships between finger and object velocities and forces,
and study conditions under which a grasp can be used to manipulate
an object. In addition to the usual fixed contact case, we also include
a complete derivation of the kinematics of grasp when the fingers are
allowed to roll or slide along the object.

1 Introduction to Grasping

Traditional robot manipulators used in industry are composed of a large
arm with a simple gripper attached as an end-effector. This type of robot
is effective for tasks in which large motions of the payload are required,
but it cannot accurately perform precise movements of the payload, such
as those that might be required in an assembly task. With a traditional
manipulator, fine motions of a grasped object require precise movements
of the joints of the robot arm. Due to the size of the links in a typical
robot manipulator, moving the entire arm is rarely an effective means of
achieving accurate motions of a grasped object. The situation is analo-
gous to a person trying to write with a pencil by moving his or her entire
arm.

A second disadvantage with traditional robot manipulators is that
for a given gripper, only a small class of objects can be grasped. A
parallel jaw gripper, for example, is very effective at grasping objects
which have parallel faces. It cannot, however, be used to “stably” grasp
a tetrahedron. This limitation is sometimes overcome by equipping the
robot arm with a tool changer, which allows different grippers to be

211

Figure 5.1: The Utah/MIT hand. (Photo courtesy of Sarcos, Inc.)

attached to a robot in an efficient fashion. While this effectively extends
the class of objects which can be lifted, it does not specifically address
the fine motion problem.

In this chapter and the next, we investigate the use of multifingered
robot hands as an alternative method for overcoming these difficulties.
A multifingered hand is a set of robots which is attached to the end of
a larger robot arm for the purpose of manipulation. Since a robot hand
is typically smaller than the robot to which it is attached, it is able to
improve the overall accuracy of the robot. Further, the extra degrees of
freedom in a multifingered hand make it possible to grasp a large class of
objects with a single “end-effector.”

The price of using a multifingered hand is the complexity of the overall
system. A robot arm with a multifingered end-effector has many degrees
of freedom, complicating both the kinematic and dynamic analyses of the
system. In particular, since the hand is in contact with the object being
manipulated, we must study the kinematics and dynamics of mechanical
systems with contact constraints. Additionally, the increased degrees of
freedom of the system increase the difficulty of planning a feasible grasp
to perform a given task.

Because of the added complexity inherent in the use of robot hands, it
is important to realize that a multifingered robot hand is not the answer
to every manipulation problem. The use of custom end-effectors can solve
a large number of problems in such areas as manufacturing and materials

212

transport. Furthermore, custom end-effectors are capable of generating
stable and rigid grasps by design; a similar grasp using an articulated
hand requires the use of feedback control and results in an overall de-
crease in the rigidity of the grasp. Nonetheless, for many situations, a
multifingered robot hand attached to a robot arm is an attractive solu-
tion to a difficult problem. The principles involved in the study of robot
hands are applicable to a number of other areas, most notably coordi-
nated manipulation between robots. Indeed, if we view two (large) robots
as fingers of a hand, then the problem of coordinated lifting reduces to
a problem in grasping. With this point of view in mind, we will present
the study of multifingered hands in a framework which is applicable to a
large class of robot systems.

Overview

We break the study of multifingered robot hands into two basic parts:
kinematics and planning, and dynamics and control. In each of these ar-
eas, the techniques presented in previous chapters are extended to account
for the additional complexity of a robot hand. We will also see many new
techniques which are unique to the study of multifingered hands, such as
grasp planning and the kinematics of rolling contact.

We begin with a detailed study of the kinematics of a multifingered
robot hand. Given models of an object, a set of robot fingers, and the con-
tact between the fingers and the object, we wish to find the relationship
between forces and motions of the object and fingers. We will be inter-
ested primarily with the kinematics of this system when the fingers do
not slip on the object. An implicit assumption in studying the kinematics
of the hand is that the contact locations are known (or can be measured).
Under this assumption, we compute the fundamental grasping constraint
which governs the motion of the hand.

The grasp planning problem is to determine a set of contact locations
for the object and the fingers. To do so, we first characterize desirable
properties of a grasp. These properties include:

1. The ability to resist external forces. Given a wrench applied to an
object, we wish to apply contact forces which generate an opposing
wrench. We will refer to a grasp in which the fingers can resist
arbitrary external forces as a force-closure grasp.

2. The ability to dextrously manipulate the object. In order to ma-
nipulate an object, we must be able to move the object in a way
compatible with the desired task. Depending on the task, this may
require independent motion in all directions or only some directions.
We refer to a grasp in which the fingers can accommodate arbitrary
object motions as a manipulable grasp.

213

Given an object, we seek to choose contacts so that these properties hold
wherever possible. We will briefly present some procedures for choosing
the locations of the contacts for some simple cases which illustrate the
techniques available.

Chapter 6 studies the dynamics and control problem for multifingered
robot hands. We extend the dynamic formulation presented in Chapter 4
to include robotic systems with contact constraints. In fact, it is possible
to do so in such a way that all of the control laws which can be ap-
plied to robot manipulators can be immediately extended and applied to
multifingered robot hands. We also present extensions for dynamics and
control of redundant robots, as these are often present in multifingered
robot systems.

Throughout this chapter and the next, we make two assumptions to
allow precise analysis:

1. The object is a rigid body in contact with a rigid link robot.

2. Accurate models of the fingers and object are given.

The relaxation of these conditions is a topic of current research (see, for
example, [47, 73]).

2 Grasp Statics

We begin by studying a particularly simple case in which all contacts
between the fingers and the object are idealized as point contacts at a
fixed location. This case allows one to ignore the possibility that a finger
rolls or slides along the surface of the object (a possibility which we shall
study in some detail later). We also begin by ignoring the kinematics of
the fingers which make up the hand: we consider only the transmission
of forces between a set of contacts and the object.

2.1 Contact models

A contact between a finger and an object can be described as a mapping
between forces exerted by the finger at the point of contact and the
resultant wrenches at some reference point on the object. In order to
simplify the formulation of the dynamics in Chapter 6, we always choose
the object reference point to be the center of mass of the object. We
represent the forces at the contacts and on the object in terms of a set
of coordinate frames attached at each contact location and the object
reference point. We assume that the location of the contact point on the
object is fixed.

For convenience, we shall always choose the contact coordinate frame,
Ci, such that the z-axis of this frame points in the direction of the inward

214

goci

gpo

P

O

Ci

y

x

z
z

y

x

z

y

x

Figure 5.2: Coordinate frames for contact and object forces.

surface normal at the point of contact (as shown in Figure 5.2). We
describe the contact location by its relative position and orientation with
respect to the object reference frame, O. That is,

goci
= (poci

, Roci
) ∈ SE(3)

is the location of the contact with respect to the object. The action of goci

is to take the coordinates of a point given in the contact coordinate frame
and return the coordinates of the same point in the object coordinate
frame. The configuration of the object relative to a fixed palm frame is
given by xo := gpo ∈ SE(3). The force applied by a contact is modeled
as a wrench Fci

applied at the origin of the contact frame, Ci.
Typically, a finger will not be able to exert forces in every direction;

several simple contact models are used to classify common contact config-
urations. We begin by studying the simplest of these contact types: one
in which the finger is only allowed to apply normal forces to the object
at the contact location. We then extend this analysis to include some
simple models of friction.

A frictionless point contact is obtained when there is no friction be-
tween the fingertip and the object. In this case, forces can only be applied
in the direction normal to the surface of the object and hence we can rep-
resent the applied wrench as

Fci
=




0
0
1
0
0
0



 fci
fci
≥ 0, (5.1)

where fci
∈ R is the magnitude of the force applied by the finger in the

normal direction. The requirement that fci
be positive models the fact

that a contact of this type can push on an object, but it cannot pull on
the object.

215

O

P

Fci

Figure 5.3: Frictionless point contact.

Frictionless point contacts almost never occur in a practical situation,
but they can serve as a useful model for contacts in which the friction
between the finger and the object is low or unknown. Since a frictionless
contact cannot exert forces except in the normal direction, modeling a
contact as frictionless insures that we do not rely on frictional forces when
we manipulate the object.

For grasps in which we do wish to make use of frictional forces, we
must provide a model for friction. We will use a simple model which
is often referred to as the Coulomb friction model. We would like to
describe how much force a contact can apply in the tangent directions to
a surface as a function of the applied normal force. The Coulomb friction
model is an empirical model which asserts that the allowed tangential
force is proportional to the applied normal force, and the constant of
proportionality is a function of the materials which are in contact.

If we let f t ∈ R denote the magnitude of the tangential force and
fn ∈ R denote the magnitude of the normal force, Coulomb’s law states
that slipping begins when

|f t| > µfn,

where µ > 0 is the (static) coefficient of friction. This implies that the
range of tangential forces which can be applied at a contact is given by

|f t| ≤ µfn. (5.2)

In particular, we see that fn must be positive in order for this relationship
to hold for at least some non-zero f t.

Equation (5.2) can be represented geometrically, as shown in Fig-
ure 5.4. The set of forces which can be applied at a contact must lie in a
cone centered about the surface normal. This cone is called the friction
cone; the angle of the cone with respect to the normal is given by

α = tan−1 µ.

216

side view

fn µfn

α

surface
object

friction

cone

Figure 5.4: Geometric interpretation of the Coulomb friction model.

A short table of friction coefficients for common materials is given in
Table 5.1. Typical values of µ are less than 1, and hence the friction cone
angle is typically less than 45◦.

A point contact with friction model is used when friction exists be-
tween the fingertip and the object, in which case forces can be exerted in
any direction that is within the friction cone for the contact. We repre-
sent the wrench applied to the object with respect to a basis of directions
which are consistent with the friction model:

Fci
=




1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0



 fci
fci
∈ FCci

, (5.3)

where

FCci
= {f ∈ R3 :

√
f2
1 + f2

2 ≤ µf3, f3 ≥ 0}.
A more realistic contact model is the soft-finger contact. Here we

allow not only forces to be applied in a cone about the surface normal,
but also torques about that normal. For simplicity, we model the torques
as being limited by a torsional friction coefficient. The applied contact
wrench is

Fci
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1



 fci
fci
∈ FCci

(5.4)

and the friction cone becomes

FCci
= {f ∈ R4 :

√
f2
1 + f2

2 ≤ µf3, f3 ≥ 0, |f4| ≤ γf3},

where γ > 0 is the coefficient of torsional friction.

217

Table 5.1: Static friction coefficients for some common materials.
(Source: CRC Handbook of Chemistry and Physics)

Steel on steel 0.58 Wood on wood 0.25-0.5
Polyethylene on steel 0.3–0.35 Wood on metals 0.2-0.6
Polyethylene on self 0.5 Wood on leather 0.3–0.4
Rubber on solids 1–4 Leather on metal 0.6

In general, we model a contact using a wrench basis, Bci
∈ Rp×mi ,

and a friction cone, FCci
. In all of our examples, we chose p = 6, the

dimension of the space of generalized forces that can be applied in SE(3).
Other choices are possible, the most common being p = 3, which is used
for planar grasping. The dimension of the wrench basis, mi, indicates the
number of independent forces that can be applied by the contact. We
require that FCci

satisfy the following properties:

1. FCci
is a closed subset of Rmi with non-empty interior.

2. f1, f2 ∈ FCci
=⇒ αf1 + βf2 ∈ FCci

for α, β > 0.

The set of allowable contact forces applied by a given contact is:

Fci
= Bci

fci
fci
∈ FCci

. (5.5)

Several common contact types are summarized in Table 5.2. Other con-
tacts, such as line and face contacts, are explored in the exercises.

2.2 The grasp map

To determine the effect of the contact forces on the object, we transform
the forces to the object coordinate frame. Let (poci

, Roci
) be the config-

uration of the ith contact frame relative to the object frame. Then, the
force exerted by a single contact can be written in object coordinates as

Fo = AdT
g−1

oci

Fci
=

[
Roci

0
p̂oci

Roci
Roci

]
Bci

fci
, fci

∈ FCci
.

The matrix AdT
g−1

oci

is the wrench transformation matrix which maps

contact wrenches to object wrenches. For brevity we shall often write
(pci

, Rci
) for the configuration of the ith contact frame, dropping the o

subscript. We define the contact map, Gi ∈ Rp×mi , to be the linear map
between contact forces, represented with respect to Bci

, and the object
wrench:

Gi := AdT
g−1

oci

Bci
.

218

Table 5.2: Common contact types.

Contact type Picture Wrench basis FC

Frictionless
point contact





0
0
1
0
0
0




f1 ≥ 0

Point contact
with friction





1 0 0
0 1 0
0 0 1
0 0 0
0 0 0
0 0 0





p
f2
1 + f2

2 ≤ µf3

f3 ≥ 0

Soft-finger





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1





p
f2
1 + f2

2 ≤ µf3

f3 ≥ 0
|f4| ≤ γf3

If we have k fingers contacting an object, the total wrench on the
object is the sum of the object wrenches due to each finger. The map
between the contact forces and the total object force is called the grasp
map, G : Rm → Rp, m = m1 + · · ·+mk. Since each contact map is linear
and wrenches can be superposed (as long as they are all written in the
same coordinate frame), the net object wrench is

Fo = G1fc1 + · · ·+Gkfck
=
[
G1 · · · Gk

]



fc1
...
fck



 ,

and the grasp map is

G =
[
AdT

g−1
oc1

Bc1 · · · AdT
g−1

ock

Bck

]
(5.6)

With this definition, the object wrench can be written

Fo = Gfc fc ∈ FC, (5.7)

219

where
fc = (fc1 , . . . , fck

) ∈ Rm

FC = FCc1 × · · · × FCck
⊂ Rm

m = m1 + · · ·+mk.

Thus, a grasp is completely described by the grasp map G and the friction
cone FC.

Definition 5.1. Representation of a grasp
A complete description of a grasp consists of a matrix G ∈ Rp×m and a
set FC ⊂ Rm which satisfies the following properties:

1. FC is a closed subset of Rm with non-empty interior.

2. f1, f2 ∈ FC =⇒ αf1 + βf2 ∈ FC for α, β > 0.

The set of wrenches that can be applied to the object by the contacts has
the form

Fo = Gfc fc ∈ FC.

From now on, we will represent a grasp by the quantities G and FC.
We often omit explicit mention of the friction cone and refer to G as a
grasp.

Example 5.1. Grasp map for frictionless point contacts
Consider first the case of several point contacts touching an object. Then,
each contact wrench can be written as

Fo =

[
Rci

0
p̂ci
Rci

Rci

]


0
0
1
0
0
0



 fci
fci
≥ 0.

Performing the matrix multiplication, we see that the object wrench has
the form

Fo =

[
nci

pci
× nci

]
fci

where nci
is the direction of the inward surface normal written in the

object coordinate frame. Combining the effect of each of the fingers
yields:

Fo =

[
nc1 · · · nck

pc1 × nc1 · · · pck
× nck

]



fc1
...
fck



 = Gfc,
Fo ∈ R6

fci
≥ 0.

Example 5.2. Soft-finger grasp of a box
Consider a box grasped by two soft-finger contacts, as shown in Fig-
ure 5.5. The position of the contact frame with respect to the object

220

x z y

xy x

z y z

Figure 5.5: Box grasped by two fingers.

frame is given by

Rc1 =




0 1 0
0 0 1
1 0 0



 pc1 =




0
−r
0



 Rc2 =




1 0 0
0 0 −1
0 1 0



 pc2 =




0
r
0



 .

The grasp map for each finger is obtained by transforming the standard
wrench basis into the object coordinate frame:

Gi =

[
Rci

0
p̂ci
Rci

Rci

]


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1



 .

Calculating and combining these gives the grasp map,

G =





0 1 0 0 1 0 0 0
0 0 1 0 0 0 −1 0
1 0 0 0 0 1 0 0
−r 0 0 0 0 +r 0 0
0 0 0 1 0 0 0 −1
0 +r 0 0 −r 0 0 0




,

with contact forces

fc = (f1
c1 , f

2
c1 , f

3
c1 , f

4
c1 , f

1
c2 , f

2
c2 , f

3
c2 , f

4
c2) ∈ R8.

The friction cone in this coordinate frame is given by:

FC = FCc1 × FCc2
FCc1 =

{
fc :

√
(f1
c1)

2 + (f2
c1)

2 ≤ µf3
c1 , |f4

c1 | ≤ γf3
c1 , f

3
c1 ≥ 0

}

FCc2 =
{
fc :

√
(f1
c2)

2 + (f2
c2)

2 ≤ µf3
c2 , |f4

c2 | ≤ γf3
c2 , f

3
c2 ≥ 0

}
.

221

O

y

y

x

C2

x

C1 x

y

2r

Figure 5.6: Planar grasping.

Example 5.3. Planar grasp of a rectangle
Consider the planar grasp shown in Figure 5.6. Rather than analyze this
grasp in SE(3), we specialize our results to SE(2). A wrench in SE(2)
is represented by a linear component f ∈ R2 and an angular component
τ ∈ R. f corresponds to the forces in the plane and τ to the torque
about the normal to the plane (see Exercise 2.11). Wrenches in SE(2)
are transformed by the rule

[
fo
τo

]
=

[
Rci

0[
−py px

]
Rci

1

] [
fci

τci

]
,

where Rci
∈ SO(2) and pci

= (px, py) ∈ R2 represents the location of ci
relative to the object reference frame.

Given these definitions, we can proceed to analyze Figure 5.6. In
SE(2), we shall choose contact coordinate frames such that the y-axis
points in the direction of the inward surface normal. With this choice,
the contact locations are

Rc1 =

[
0 1
−1 0

]
Rc2 =

[
0 −1
1 0

]

pc1 =

[
−r
0

]
pc2 =

[
r
0

]
.

A wrench basis for a point contact with friction is

Bci
=




1 0
0 1
0 0





with the friction cone constraint written as

fci
∈ FCci

FCci
= {f ∈ R2 : |f1| ≤ µf2, f2 ≥ 0}.

Finally, the grasp map is given by

G =
[
AdT

g−1
oc1

Bc1 AdT
g−1

oc2

Bc2

]
=




0 1 0 −1
−1 0 1 0
r 0 r 0



 .

222

3 Force-Closure

An important property of a grasp is the ability to balance external object
wrenches by applying appropriate finger wrenches at the contact points.
For example, if we are using a multifingered hand to lift an object from
a table, we must be able to exert forces on the object which act in the
opposite direction to gravity. Depending on the task, we may also need
to resist wrenches in other directions. Doing so is complicated by the fact
that we must insure that the applied finger forces remain in the friction
cone at all times so as to avoid slippage of the fingers on the surface of
the object.

3.1 Formal definition

If a grasp can resist any applied wrench, we say that such a grasp is
force-closure.1 Formally, we make the following definition:

Definition 5.2. Force-closure grasp
A grasp is a force-closure grasp if given any external wrench Fe ∈ Rp

applied to the object, there exist contact forces fc ∈ FC such that

Gfc = −Fe.

The following proposition follows directly from the definition.

Proposition 5.1. Characterization of all force-closure grasps
A grasp is force-closure if and only if G(FC) = Rp.

A key feature of a force-closure grasp is the existence of internal forces.
An internal force is a set of contact forces which result in no net force on
the object. In the previous (planar) example, we see that

fN =





0
1
0
1



 =⇒ GfN = 0.

This motivates the following definition. Let int(FC) denote the interior
of the friction cone.

Definition 5.3. Internal forces
If fN ∈ N (G) ∩ FC, then fN is an internal force. If fN ∈ N (G) and
fN ∈ int(FC), then it is called a strictly internal force.

1To be consistent with the literature, we use the term force-closure instead of
wrench-closure.

223

Internal forces can be used to insure that contact forces satisfy friction
cone constraints. Note that an internal force is a set of contact forces,
represented with respect to the wrench basis at each contact. The fol-
lowing proposition shows that the existence of a strictly internal force is
a necessary condition for a grasp to be force-closure.

Proposition 5.2. Necessity of internal forces
A grasp is force-closure if and only if G is surjective and there exists a
vector of contact forces fN ∈ N (G) such that fN ∈ int(FC).

Proof. (Sufficiency) Choose Fo ∈ Rp and let f ′c be any vector such that
Fo = Gf ′c. Since G is surjective, such an f ′c must exist. We will show
that there exists an α such that f ′c + αfN ∈ int(FC). Notice that

lim
α→∞

f ′c + αfN
α

= fN ∈ int(FC);

therefore, there exists α′ sufficiently large such that

f ′c + α′fN
α′ ∈ int(FC) ⊂ FC.

From the properties of the friction cone, it follows that

fc := f ′c + α′fN ∈ int(FC)

and Gfc = Gf ′c = Fo.

(Necessity) Suppose that a grasp is force-closure. Choose f1 ∈ int(FC)
such that Fo = Gf1 6= 0. Choose f2 ∈ FC such that Gf2 = −Fo
and define fN = f1 + f2. Then, we see that GfN = Fo − Fo = 0 and
fN ∈ int(FC) from the properties of a cone.

3.2 Constructive force-closure conditions

Verifying that a grasp is force-closure can be difficult due to the form of
the friction cone. In certain simple cases, however, it is possible to verify
that a grasp is force-closure directly from the definition. For example, if
a grasp consists only of frictionless point contacts, then we saw that the
grasp map had the form

G =

[
nc1 · · · nck

pc1 × nc1 · · · pck
× nck

]

FC = {f ∈ Rk : fi ≥ 0}.

Thus, G(FC) = R6 if and only if positive linear combinations of the
columns of G span R6.

224

(a)

v4v6

v5

co(S) v3
v1

v2

(b)

separating
c hyperplane

Figure 5.7: Convex hull and separating hyperplane.

This example shows that the force-closure problem can be reformu-
lated as a problem in positive linear spaces. This motivates the following
set of definitions; see [97] for a more detailed introduction.

A set of vectors {v1, · · · , vk} with vi ∈ Rp is positively dependent if
there exist αi > 0 such that

k∑

i=1

αivi = 0.

A set of vectors {v1, · · · , vk} positively spans Rn if for every x ∈ Rn there
exists αi > 0, i = 1, · · · , k such that

k∑

i=1

αivi = x.

Any set of vectors which positively spans Rn is positively dependent
(by choosing x = 0). Note that positively dependent vectors must have
strictly positive coefficients: αi > 0.

A set K is said to be convex if for every x, y ∈ K, λx+ (1− λ)y ∈ K,
λ ∈ [0, 1]. Thus any line connecting two points in a convex set lies in that
set. The convex hull of a set S, denoted co(S), is the smallest convex set
K containing S (i.e., it is the intersection of all convex sets containing S).
Using these definitions, it can be shown that given a set S = {v1, · · · , vk},
the convex hull of S is

co(S) = {v =
∑
αivi:

∑
αi = 1, αi ≥ 0}.

This concept is illustrated in Figure 5.7a.
A useful object in the study of convex sets is the separating hyper-

plane. Given a point c ∈ Rp, we define a hyperplane through c with

225

normal v ∈ Rp as

Hv(c) = {x ∈ Rp : vT (x− c) = 0}.
It is a basic theorem in convex analysis that given any convex set K and
a point c /∈ K, there exists a hyperplane Hv(c) such that for all x ∈ K,
vT (x − c) > 0. That is, all points in K lie on the “same side” of Hv(c).
Such a hyperplane is called a separating hyperplane between K and c
(see Figure 5.7b). If c lies on the boundary of K, then we replace the
condition vT (x−c) > 0 by vT (x−c) ≥ 0 and we say Hv(c) is a supporting
hyperplane.

The following proposition shows the utility of these concepts in de-
termining if a grasp is force-closure.

Proposition 5.3. Convexity conditions for force-closure grasps
Consider a fixed contact grasp which contains only frictionless point con-
tacts. Let G ∈ Rp×m be the associated grasp matrix and let {Gi} denote
the columns of G. The following statements are equivalent:

1. The grasp is force-closure.

2. The columns of G positively span Rp.

3. The convex hull of {Gi} contains a neighborhood of the origin.

4. There does not exist a vector v ∈ Rp, v 6= 0, such that for i =
1, . . . ,m, v ·Gi ≥ 0.

The equivalence of conditions (1) and (2) follows from the definition of
force-closure for a grasp with frictionless point contacts. The remaining
conditions rely on tools from convexity theory which are beyond the scope
of this book. See [97] for details.

The fourth condition of Proposition 5.3 is computationally attractive
since candidates for v can be constructed from the columns of G. Namely,
given any set of p− 1 independent columns of G, let v ∈ Rp be a nonzero
vector which is perpendicular to the p−1 columns. To verify condition 4,
we only need to check that the dot products of v and the remaining
columns of G do not all have the same sign. It is left as an exercise to
show that only values of v defined in this manner need to be considered.
Note that the vector v, if it exists, defines the normal to a supporting
hyperplane through the origin.

Example 5.4. Using convexity to determine force-closure
Consider the planar point contact grasps shown in Figure 5.8. In the
first grasp, the contact locations are clustered near the corners of the
rectangular object. The grasp map for these contacts is given by

G =




1 0 −1 0
0 −1 0 1
−a b −a b



 ,

226

fc4

fc2

fc3

fc1
fc4

fc3

fc2

fc1

fc4

fc3

fc2

fc1

fx

fy

fy

fx

τ

τ

fc4

fc3

fc2

fc1

Figure 5.8: Determining whether a planar grasp with point contacts is a
force-closure grasp.

where a, b > 0. A supporting hyperplane candidate can be formed by
choosing any two columns of G. Let vij represent the normal to the
plane formed by Gi and Gj . Enumerating all possibilities, we have

vT12 =
[
a b 1

]
vT12G =

[
0 0 −2a 2b

]

vT13 =
[
0 1 0

]
vT13G =

[
0 −1 0 1

]

vT14 =
[
a −b 1

]
vT14G =

[
0 2b −2a 0

]

vT23 =
[
a −b −1

]
vT23G =

[
2a 0 0 −2b

]

vT24 =
[
1 0 0

]
vT24G =

[
1 0 −1 0

]

vT34 =
[
a b −1

]
vT34G =

[
2a −2b 0 0

]
.

Since none of these possibilities satisfy condition 4 of Proposition 5.3,
we conclude the grasp is force-closure. The convex hull for this grasp is
shown in the upper right of Figure 5.8.

For the second grasp, the contact points have been chosen such that
a, b = 0, and hence

G =




1 0 −1 0
0 −1 0 1
0 0 0 0



 .

227

f+
c2f−c1

f+
c1 f−c2

f+
c2

2r

τ

f−c2

f+
c1

f−c1

fx

fy

Figure 5.9: Force-closure for point contact with friction.

This grasp is not force-closure since it is not possible to resist torques
using positive linear combinations of the columns of G (condition 2).
The convex hull of the columns of G lies completely in the fx, fy plane,
and does not include a neighborhood of the origin (condition 3). Finally,
choosing v = (0, 0, 1),

vTG =
[
0 0 0 0

]
,

and hence condition 4 also fails.

In some cases, the results of Proposition 5.3 can be extended to grasps
which include frictional contacts. We motivate this with an example:

Example 5.5. Using convexity for grasps with friction
Consider the planar grasp shown in Figure 5.9. Rather than describe
this grasp using our usual contact wrench basis, we note that all contact
forces which lie in the friction cone can be written as positive linear
combinations of the forces which describe the edges of the cone. Hence,
we can determine if a grasp is force-closure by checking to see if the
object wrenches corresponding to the edges of the contact friction cone
positively span the object wrench space.

In the case of planar contacts, this is equivalent to defining a contact
map

G′
i =




1 1
µ −µ
µr −µr





and a friction cone

FC ′
ci

= {f ∈ R2 : f1, f2 ≥ 0},

which has the same form as two independent, frictionless point contacts.
Hence, by appropriate choice of basis, we can use Proposition 5.3 to check
force-closure of planar grasps with friction.

228

Figure 5.10: Approximations of a spatial friction cone.

For spatial (3-D) grasps, the extension of Proposition 5.3 to contact
models with friction is not so straightforward. Since the friction cone
cannot be represented as the sum of a finite set of vectors, we cannot
use the convex hull of a finite basis to determine if a grasp is force-
closure. In practice, the circular friction cone can be approximated by a
cone generated by a finite set of vectors. This situation is shown in Fig-
ure 5.10. The force-closure condition can then be checked by evaluating
the convex hull of the (conservative) approximation. If the convex hull
contains a neighborhood of the origin, then the grasp is force-closure. For
a finite-dimensional approximation, this is a sufficient but not necessary
condition.

Additional methods of checking force-closure for spatial grasps are
given in the next section.

4 Grasp Planning

In this section, we briefly present methods for choosing contact locations
which result in a force-closure grasp.

4.1 Bounds on number of required contacts

Suppose that we are given the task of designing a multifingered robot
hand for use in a given set of tasks. One of the first decisions that
must be made is the number and type of the fingers. In this section, we
consider the following question: given a contact model, how many fingers
are necessary to grasp any object? This places a lower bound on the
number of fingers which we must include on our hand, given a choice of
contact type.

Given an object O ⊂ R3 (or O ⊂ R2 for the planar case), let Σ = ∂O
denote the boundary of the object. We assume that Σ is a connected,

229

v2
v1

v4 v3
v5

v2

(a) (b) (c)

v1

v3
v5

v2
v1

v4 v3

Figure 5.11: Sets of vectors which positively span R2.

piecewise smooth surface. Let Λ(Σ) denote the set of all wrenches that
can be applied to an object using frictionless point contacts:

Λ(Σ) = {
[

nci

pci
× nci

]
: ci ∈ ∂O},

where nci
is the inward pointing unit normal to Σ at the point ci, and pci

is the contact point relative to the object frame. A surface Σ is an excep-
tional surface if the convex hull of Λ(Σ) does not contain a neighborhood
of the origin. An object with an exceptional surface can never be grasped
using only frictionless point contacts. Examples of exceptional surfaces
are the sphere in R3 and the circle in R2.

For non-exceptional surfaces, upper and lower bounds for the number
of contacts required for a force-closure grasp can be obtained by using
two classical theorems in convex analysis.

Theorem 5.4 (Caratheodory). If a set X = {v1, . . . , vk} positively spans
Rp, then k ≥ p+ 1.

Theorem 5.5 (Steinitz). If S ⊂ Rp and q ∈ int(coS), then there exists
X = {v1, . . . , vk} ⊂ S such that q ∈ int(coX) and k ≤ 2p.

Caratheodory’s theorem implies that if a surface can be grasped with
a force-closure grasp, then it must have at least p + 1 contacts. This is
easy to visualize in the plane, as shown in Figure 5.11. In this case p = 2,
and hence Caratheodory’s theorem asserts that any set of vectors which
positively spans R2 must have at least 3 elements. Suppose we choose
any two of the vectors shown in the figure. If we label the two vectors as
vi and vj , then −(vi + vj) never lies in the positive span of vi and vj . A
similar argument holds for p > 2. Of course, a set of vectors may have
more than p+ 1 elements and still not positively span Rp. For example,
the set {v1, v2, v3} in Figure 5.11a does not positively span R2.

Steinitz’s theorem places an upper bound on the minimal number of
contacts which are needed. Let S = Λ(Σ) and choose q = 0. If the

230

Table 5.3: Lower bounds on the number of fingers required to grasp an
object.

Space Object type Lower Upper FPC PCWF SF
Planar Exceptional 4 6 n/a 3 3

(p = 3) Non-exceptional 4 3 3

Spatial Exceptional 7 12 n/a 4 4
(p = 6) Non-exceptional 12 4 4

Polyhedral 7 4 4

grasp is force-closure, then 0 ∈ int(S) and by Steinitz’s theorem there
exist 2p vectors v1, . . . , v2p ∈ Λ(Σ) which generate a force-closure grasp.
Hence, Steinitz’s theorem guarantees that we need at most 2p contacts to
grasp any non-exceptional object. These 2p vectors may not be unique;
Figures 5.11b and 5.11c show two choices of 4 vectors which span R2.
Note that in Figure 5.11c, v3 is redundant, but in Figure 5.11b all of the
vectors are needed to positively span R2.

Caratheodory’s and Steinitz’s theorems allow us to bound the num-
ber of contacts required for a force-closure grasp using frictionless point
contacts. If we let p be the dimension of the wrench space and k be the
number of contacts, then

p = 3 (planar) =⇒ 4 ≤ k ≤ 6

p = 6 (spatial) =⇒ 7 ≤ k ≤ 12.

It can be shown that for the planar case (p = 3) the lower bound is
achievable for all non-exceptional surfaces. For the spatial case (p = 6),
proofs exist for special classes of objects showing that the lower bound
can be achieved, but the general case is not completely solved. Among
the more useful classes of objects which can be grasped with at most
seven contacts are the set of polyhedral objects and the set of everywhere
smooth objects.

For more general contact types, bounds on the number of contacts
are also available. A detailed description of these bounds is beyond the
scope of this book, but can be found in [66]. We note that for the point
contact with friction case, the lower bounds can be exhibited using a
regular tetrahedron (or equilateral triangle in the plane) and choosing
µ < tan 19.5◦. This issue is explored further in the exercises and in the
next section.

Table 5.3 summarizes the number of contacts required for various con-
tact models. These bounds are lower bounds on the number of contacts
required for a force-closure grasp of any object in the indicated class.
That is, in order to be able to grasp every object in the class, at least
that many contacts must be available.

231

n⊥2

p1 p2
n1 n2

n⊥1

Figure 5.12: Geometric relationships for 2-D force-closure grasp using
two point contacts with friction.

4.2 Constructing force-closure grasps

In this section, we show one particularly simple method of computing
and constructing force-closure grasps for the case of two point contacts
with friction and a planar object. The algorithm is based on the following
theorem:

Theorem 5.6. Planar antipodal grasps [82]
A planar grasp with two point contacts with friction is force-closure if
and only if the line connecting the contact point lies inside both friction
cones.

A grasp satisfying the conditions of this theorem is called an antipodal
grasp. The proof of the theorem is left as an exercise.

To convert this theorem into an algorithm for planning grasps, we
note that the conditions of the theorem can be written as a set of linear
inequality constraints. Let n1 denote the inward pointing normal at the
contact point p1 and n2 denote the inward point normal at the contact
point p2 (see Figure 5.12). Given a unit vector n, define n⊥ to be the
unit vector perpendicular to n which satisfies

n⊗ n⊥ = +1,

where ⊗ is the 2-D cross product:

a⊗ b = det[a b] a, b ∈ R2.

Suppose that we are given a polygonal object and we wish to find
all possible force-closure grasps. The constraints that the line between
contacts lie in the relevant friction cones become:

A : (n1 − µn⊥1)⊗ (p2 − p1) > 0

B : (n1 + µn⊥1)⊗ (p2 − p1) < 0

C : (n2 − µn⊥2)⊗ (p1 − p2) > 0

D : (n2 + µn⊥2)⊗ (p1 − p2) < 0.

232

1.0

D

C

E11.00.5

A
B

0
0

0.5

E2

E1

E2

Figure 5.13: Force-closure grasps for an equilateral triangle. The lightly
shaded region corresponds to the set of all force-closure grasps and the
dark square (and corresponding darkened regions on the triangle) indi-
cates maximally independent regions of contact.

Given any two edges, we can represent these inequalities on a graph, by
drawing the lines which correspond to the inequalities becoming identi-
cally zero. Figure 5.13 gives an example of such a graph.

This graph gives a complete description of the force-closure grasps
between any two edges. By enumerating all pairs of edges, we can gen-
erate all possible force-closure grasps for the object. There are many
methods which might be used to choose among the grasps. One is to
assign a quality measure to a grasp and choose the grasp which maxi-
mizes this quality measure and is also force-closure. Another possibility
is to choose a grasp such that it is maximally distant from the edges of
the force-closure region. Such a grasp is equivalent to choosing maximal
independent regions of contact on each edge. That is, we can attempt
to find regions on each edge such that if either contact is within the re-
spective region, the grasp is force-closure. Such a region corresponds to
a square in the force-closure grasp.

The algorithm presented above can be extended to the spatial case
using the following variant of Theorem 5.6:

Theorem 5.7. Spatial antipodal grasps [82]
A spatial grasp with two soft-finger contacts is force-closure if and only
if the line connecting the contact point lies inside both friction cones.

It is also possible to extend the algorithm sketched above to work
for objects with curved surfaces. In this case, the constraints become
nonlinear functions of the contact locations (suitably parameterized).
However, the algorithm can still be applied if there is a way to find the

233

zeros of the given expressions.

5 Grasp Constraints

In the previous sections, we analyzed the grasp kinematics ignoring the
kinematics of the fingers. That is, we assumed that forces could be applied
at contact points irrespective of how those forces were generated. In this
section, we extend our analysis to include the kinematics and statics of
the robotic fingers.

We shall view a robot hand grasping an object as a kinematically
constrained system. In correspondence with the preceding sections, we
assume that the contact locations are fixed on the object. In this case, the
constraints between the object and a finger can be formulated by requiring
that certain velocities are equal. For example, at a given contact point,
the velocity of the fingertip and the velocity of the contact point (on the
object) must agree in the direction normal to the surface. For simplicity,
we assume throughout the remainder of this section that all contacts are
either point contacts with friction or soft-finger contacts. This justifies
our assumption that the contact location is fixed; the more general case
is considered in the next section.

5.1 Finger kinematics

In Chapter 3 we derived the forward kinematics for an open-chain manip-
ulator using the product of exponentials formula. Recall that the spatial
velocity of the end-effector of the robot can be written as

V sst = Jsst(θ)θ̇,

where Jsst(θ) ∈ Rp×n is the spatial Jacobian of the forward kinematics
function. The twist V sst is the generalized velocity of the tool frame,
written with respect to a fixed base frame. The body velocity of the tool
frame is given by

V bst = Ad−1
gst(θ)

Jsst(θ)θ̇.

It represents the instantaneous velocity of the tool frame, written in tool
coordinates.

We model a robot hand as a collection of robots (fingers) attached
to a common base (palm). For each finger in the hand, attach a frame
Si to the base of the finger and a frame Fi to the fingertip at the point
of contact, as shown in Figure 5.14. Note that the frame Fi moves
with the fingertip, while the frame Ci, also located at the contact point,
moves with the object. Let Jssifi

be the Jacobian for Fi relative to the
fixed frame Si so that

V bsifi
= Ad−1

gsifi
(θfi

) J
s
sifi

(θfi
)θ̇fi

, (5.8)

234

O

P

Ci Fj

SjSi

Figure 5.14: Grasp coordinate frames.

where θfi
∈ Rni is the vector of joint angles for the ith finger.

The grasping constraint for a finger gives the directions in which mo-
tion is not allowed. Relative to the contact frame Ci, these constraints
can be written as constraints on the velocity of the finger frame Fi. For
example, a frictionless point contact restricts the velocities of the finger
and the object such that the relative velocity between these two frames is
zero in the direction normal to the surface. By convention, this is the z-
axis direction in the contact frame, and hence we can write the constraint
as [

0 0 1 0 0 0
]
V bfici

= 0.

Note that the matrix multiplying V bfici
is precisely the transpose of the

wrench basis for a frictionless point contact.
In general, the directions in which motion is constrained are precisely

those in which forces can be exerted. Hence, for a contact with wrench
basis Bci

, we require that

BTci
V bfici

= 0. (5.9)

Equation (5.9) restricts the relative velocity between the finger and the
object to be perpendicular to the directions in which forces can be applied.

We can now proceed to write equation (5.9) in terms of a set of known
quantities. We perform all computations using body velocities, and hence
we temporarily drop the superscript b. Using the velocity relations in
Chapter 2 Section 4, we can write Vfici

as

Vfici
= Ad−1

gpci
Vfip + Vpci

= −Ad−1
gpci

Adgpfi
Vpfi

+ Vpci
.

(5.10)

235

Vpfi
is the velocity of the fingertip relative to the palm frame. Since the

finger base frames are fixed relative to the palm frame, it follows that

Vpfi
= Ad−1

gsifi
Vpsi

+ Vsifi
= Vsifi

. (5.11)

We can write Vpci
by adding the velocity between the palm and object to

the velocity between the object and contact. Since the contact frame is
fixed relative to the object frame (by the fixed contact assumption), we
have

Vpci
= Ad−1

goci
Vpo + Voci

= Ad−1
goci

Vpo. (5.12)

Substituting equations (5.11) and (5.12) into equation (5.10) gives

Vfici
= −Ad−1

gpci
Adgpfi

Vsifi
+ Ad−1

goci
Vpo.

We can now substitute this into the constraint equation and use the finger
kinematics to yield

BTci

(
Ad−1

gpci
Adgpfi

Ad−1
gsifi

)
Jssifi

θ̇fi
= BTci

Ad−1
oci
Vpo.

This equation represents the ith contact constraint in terms the finger
joint angles θ and the object configuration gpo.

The contact constraint can be simplified by making use of the adjoint
equation

Ad−1
gpci

Adgpfi
Ad−1

gsifi
=
(
Adgsip

Adgpo
Adgoci

)−1
= Ad−1

gsici
.

Making this substitution, the constraint for the ith finger becomes

BTci
Ad−1

gsici
Jssifi

(θfi
)θ̇fi

= (AdT
g−1

oci

Bci
)TV bpo = GTi V

b
po. (5.13)

Stacking equation (5.13) for each finger, we can write the constraint in
matrix form. Let k be the number of fingers, ni the number of degrees
of freedom for the ith finger, and set n = n1 + · · ·+ nk. Define the hand
Jacobian as the matrix Jh(θ, xo) : Rn → Rm given by

Jh(θ, xo) =





BTc1 Ad−1
gs1c1

Jss1f1(θf1) 0

. . .

0 BTck
Ad−1

gskck
Jsskfk

(θfk
)



 ,

(5.14)where θ = (θf1 , . . . , θfk
) ∈ Rn. Then, the constraints in equation (5.13)

have the form

Jh(θ, xo)θ̇ = GTV bpo (5.15)

236

where xo := gpo is the configuration of the object and θ is the vector
of all finger joint angles. Equation (5.15) is the fundamental grasping
constraint; it relates velocities of the fingers to the velocity of the object.
The quantities in the constraint plus a description of the grasp friction
cone provide all of the necessary information for modeling a fixed contact
grasp.

Although we have derived the grasp constraint in a very mechanical
fashion, it is possible to interpret equation (5.15) in a simple and mean-
ingful way. Equation (5.15) equates the velocity of the object and the
velocity of the fingertip at the point of contact between the two. Since
motion in some directions may be allowed (for example, rotation about
the contact point), we only constrain those directions specified by the
columns of Bci

. Equation (5.15) is merely a restatement of equation (5.9)
written in a more useful form.

The quantities Jh, G, and FC completely characterize the proper-
ties of a set of fingers grasping an object. This motivates the following
definition.

Definition 5.4. Representation of a multifingered grasp
A multifingered grasp is described by the hand Jacobian Jh(θ, xo) : Rn →
Rm, the grasp map G : Rm → Rp, and the friction cone FC ⊂ Rm which
satisfies the properties in Definition 5.1.

Formally, we distinguish between a grasp, which includes specification
only of the object and the contact locations, and a multifingered grasp,
which includes a description of the finger kinematics. When the usage is
clear from context, we use the term grasp.

5.2 Properties of a multifingered grasp

We are now in a position to study the mathematical properties of the
grasp constraint in equation (5.15) and interpret them. In the beginning
of this chapter, we saw that the force-closure properties of a grasp are
characterized by the grasp map G and the friction cone FC. In studying
force-closure, we assumed that all allowable contact forces could be ap-
plied by the fingers; we can now detail under what conditions this is true
and what happens when this condition fails.

A fundamental property of a multifingered grasp is the ability of the
robot fingers to accommodate an object motion. If a set of fingers can
accommodate any motion of the object without losing contact, we say
that such a grasp is manipulable:

Definition 5.5. Manipulable grasp
A multifingered grasp is manipulable at a configuration (θ, xo) if for any
object motion V bpo there exists θ̇ which satisfies equation (5.15).

The following proposition follows from the definition.

237

JTh

θ̇

τ fc

ẋc

finger contact object

velocity

domain

force

domain
Fo

V bpo

Jh GT

G

Figure 5.15: Diagram of relationships for a multifingered grasp. The
contact force must satisfy fc ∈ FC for these relationships to hold.

Proposition 5.8. Characterization of all manipulable grasps
A grasp is manipulable at a configuration (θ, xo) if and only if

R(GT) ⊂ R(Jh(θ, xo)).

Manipulability does not require that the matrix Jh be injective (one-
to-one); there may be many finger motions which accommodate a given
object motion. This can happen precisely in the case where Jh is full
(row) rank with more columns than rows (n > m), and hence has a
non-trivial null space. Any joint velocities θ̇N ∈ N (Jh) result in no
motion of the contacts; we call θ̇N an internal motion. Internal motions
can be added to a given finger velocity without changing the velocity of
the grasped object and so the finger-object system becomes a redundant
manipulator. Note that this kinematic redundancy may appear even if
none of the individual fingers are redundant, due to the Bci

terms in the
definition of the hand Jacobian. These have the effect of masking out
joint velocities in directions which do not violate the contact constraints,
and hence allowing internal motions in those directions.

Equation (5.15) describes the velocity relationships between the ob-
ject and fingers. We will also make use of the force relationships. As
described in Section 2, the grasp map characterizes the relationship be-
tween contact forces and object wrenches:

Fo = Gfc.

The contact forces can be related to the joint torques by using the trans-
pose of the hand Jacobian:

τ = JTh fc (5.16)

(this follows by equating the work done by the joints and contacts). As in
our derivation of the grasp map, the contact forces must lie in the friction

238

Table 5.4: Grasp properties.

Property Definition Description

Force-closure Can resist any applied
wrench

G(FC) = Rp

Manipulable Can accommodate any
object motion

R(GT) ⊂ R(Jh)

Internal forces Contact forces fN which
cause no net object
wrench

fN ∈ N (G) ∩ int(FC)

Internal motions Finger motions θ̇N
which cause no object
motion

θ̇N ∈ N (Jh)

Structural forces Object wrench FI which
causes no net joint
torques

G+FI ∈ N (JTh)

cone FC in order to avoid slipping. The complete set of relationships
between the velocities and forces in a multifingered grasp are summarized
in Figure 5.15.

As in Chapter 3, some care must be taken in interpreting equa-
tion (5.16) in the case that Jh ∈ Rm×n is not square. If the grasp is
manipulable and force-closure, then it follows that Jh is surjective onto
the range of GT . In this case, we can always exert a given contact force,
but the joint torques required may not be unique. If internal motions are
present, the dynamics of the manipulator must be taken into account.
This is discussed more fully in the next chapter.

If a grasp is not manipulable, then it may not be possible to exert
arbitrary contact forces. In this case, JTh will have a non-trivial null
space and hence there may exist contact forces fc which give τ = 0 in
equation (5.16). This is completely analogous to the case in an open-chain
manipulator with fewer joint degrees of freedom than the dimension of
the workspace. In particular, we call contact forces which lie in the null
space of JTh structurally dependent forces, since they generate forces in the
mechanism that cannot be determined without more information about
the elastic properties of the mechanism.

As we have seen above, the properties of a grasp can be completely
described by the grasp map G, the hand Jacobian Jh, and the friction
cone FC. These properties of a grasp are summarized in Table 5.4.
Note that force-closure and manipulability are separate properties. It is
possible for a grasp to be force-closure but not manipulable, manipulable
and not force-closure, or neither force-closure or manipulable. A few of
these possibilities are illustrated in Figure 5.16.

239

not manipulable

force closure not force-closure not force-closure
not manipulable manipulable

Figure 5.16: Some grasps illustrating manipulability and force-closure
properties.

5.3 Example: Two SCARA fingers grasping a box

As an example of how these calculations proceed, consider the grasp
shown in Figure 5.17. In this example, two SCARA fingers are used to
grasp a box. Assume that the contact points are located at pci

= (0,±r, 0)
with respect to the object frame of reference, and that each contact is
modeled as a soft-finger contact.

The majority of the quantities needed to describe the grasping con-
straint have been previously computed. The grasp map was derived in
Example 5.2:

G =




0 1 0 0 1 0 0 0
0 0 1 0 0 0 −1 0
1 0 0 0 0 1 0 0
−r 0 0 0 0 +r 0 0
0 0 0 1 0 0 0 −1
0 +r 0 0 −r 0 0 0



 ,

using the contact frames shown in Figure 5.5. The wrench basis for each
finger was given by

Bci
=




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 1



 .

For simplicity, we take the length of the fingertips as l3 = 0 and hence the
contact occurs at the usual SCARA end-effector location. In this case,
the Jacobian is that given in Example 3.8:

Jssifi
=




0 l1 cos θ1 l1 cos θ1+l2 cos(θ1+θ2) 0
0 l1 sin θ1 l1 sin θ1+l2 sin(θ1+θ2) 0
0 0 0 1
0 0 0 0
0 0 0 0
1 1 1 0



 .

If l3 6= 0, then we must recompute the Jacobian to include the additional
displacement (see Exercise 11).

The only remaining quantity to calculate is Ad−1
gsici

, which maps twists

from the spatial frame into the contact frame for a given finger. We can
construct Ad−1

gsici
using the transformation

g−1
sici

= (gsip gpo goci
)
−1

= g−1
oci
g−1
po g

−1
sip.

240

a

P

O

2r

b

S2

b

x

y

C1

C2

y

x
z

z

x

y y

x

z z

l1

l3

S1

l2

Figure 5.17: Two-fingered grasp using SCARA robots.

Since the transformations goci
and gsip are constant, we can write

Ad−1
gsici

= Ad−1
goci

Ad−1
gpo

Ad−1
gsip

.

Note that only Ad−1
gpo

depends on xo = gpo, the current configuration of
the object, and the other transformations are constant matrices.

To construct the grasp constraint, we compose the matrices given
above in the appropriate fashion. In full generality, the contact con-
straints are quite complex and the calculations are more suited for auto-
mated rather than manual computation. We therefore restrict ourselves
to analyzing the grasp constraints for the object configuration shown in
Figure 5.17. That is, we set

Rpo = I ppo =




0
0
a





and hence Ad−1
gsici

becomes a constant matrix. Rather than compute it

in pieces, we use the transformations gsici
, which can be written down

by inspection:

Rs1c1 =
[

0 1 0
0 0 1
1 0 0

]

ps1c1 =
[

0
b−r
a

] =⇒ Ad−1
gs1c1

=



R
T
s1c1

(
b−r 0 0
0 a r−b
−a 0 0

)

0 RTs1c1





Rs2c2 =
[

1 0 0
0 0 −1
0 1 0

]

ps2c2 =
[

0
−b+r
a

] =⇒ Ad−1
gs2c2

=



R
T
s2c2

(
0 a b−r
r−b 0 0
a 0 0

)

0 RTs2c2



 .

241

Finally, we calculate Jh:

Jh =

[
BTc1 Ad−1

gs1c1
Jss1f1(θf1) 0

0 BTc2 Ad−1
gs2c2

Jss2f2(θf2)

]
=

[
J11 0
0 J22

]

J11 =





0 0 0 1
−b+ r −b+ r + l1c1 −b+ r + l1c1 + l2c12 0

0 l1s1 l1s1 + l2s12 0
0 0 0 0





J22 =





b− r b− r + l3c3 b− r + l3c3 + l4c34 0
0 0 0 1
0 −l3s3 −l3s3 − l4s34 0
0 0 0 0





(for the particular configuration shown in Figure 5.17).
We can now evaluate the properties of the grasp. From Example 5.2

we have that the grasp is force-closure (this does not depend on the fingers
which actually exert the forces). However, the grasp is not manipulable,
since rotation of the object about the y-axis yields

GT




0
0
0
0
1
0



 =





0
0
0
1
0
0
0
−1



 /∈ R(Jh).

The grasp contains internal motions which are in the vector space spanned
by

θ̇N1
=





0
0
1
0
0
0
0
0



 θ̇N2
=





0
0
0
0
0
0
1
0





at the configuration shown. These motions correspond to rotating the
last revolute joint of each finger, resulting in a rotation of the fingertip
about contact point. In the more general case where l3 6= 0 and the hand
is in an arbitrary configuration, the internal motion still exists but all
three revolute joints will have nonzero instantaneous velocities.

6 Rolling Contact Kinematics

Most real-world grasping situations involve moving rather than fixed con-
tacts. Human fingers and many robotic fingers are actually surfaces, and
manipulation of an object by a set of fingers involves rolling of the fin-
gers along the object surface. In this section, we derive the kinematic
equations for one object rolling against another and extend the grasping

242

O

∂c
∂u

c

R2

u

v

Figure 5.18: Surface chart for a two-dimensional object in R3.

formulation to moving contacts. The formulation here covers rolling be-
tween smooth fingers and smooth objects. It does not cover scenarios in
which fingers roll on the edge of an object, but extensions to this case are
possible. We begin with a brief description of surface parameterizations.

6.1 Surface models

Given an object in R3, we describe the surface of the object using a local
coordinate chart, c : U ⊂ R2 → R3, as shown in Figure 5.18. The map c
takes a point (u, v) ∈ R2 to a point x ∈ R3 on the surface of the object,
written in the object frame of reference, O. Thus, locally, we can describe
a point on the surface by specifying the corresponding (u, v). In general,
it may take several coordinate charts to completely describe the surface
of the object. A surface S is regular if for each point p ∈ S there exists
a neighborhood V ⊂ R3, an open set U ⊂ R2, and a map c : U → V ∩ S
such that

1. c is differentiable.

2. c is a homeomorphism from U to V ∩ S. That is, c is continuous,
bijective (one-to-one and onto), and has a continuous inverse.

3. For every α = (u, v) ∈ U , the map ∂c
∂α (α) : R2 → R3 is injective

(one-to-one).

At any point on the object, we can define a tangent plane which
consists of the space of all vectors which are tangent to the surface of
the object at that point. The tangent plane is spanned by the vectors
cu := ∂c

∂u and cv := ∂c
∂v . That is, any vector which is tangent to the

243

surface at a point c(u, v) may be expressed as a linear combination of the
vectors cu and cv, evaluated at (u, v). A coordinate chart is an orthogonal
coordinate chart if cu and cv are orthogonal.

Theorem 5.9. Locally, there exists an orthogonal chart for all regular
surfaces.

The proof can be found in any standard book on differential geometry.

In the sequel, we will make frequent use of some more detailed con-
cepts from differential geometry. Although the application of the rolling
equations does not require knowledge of these concepts, they do allow a
deeper understanding of the material. We present here a brief review of
the relevant topics; a full description can be found in DoCarmo [27].

In order to define the area of a surface, one needs to define the inner
product between two tangent vectors on the surface. This defines the area
of a parallelogram and the total area can then be calculated by integrating
the infinitesimal areas generated by parallelogram-shaped patches on the
surface. The first fundamental form for a surface describes how the inner
product of two tangent vectors is related to the natural inner product
on R3. In a local coordinate chart, it is represented by a quadratic form
Ip : R2 × R2 → R which takes two tangent vectors attached at a point
p = c(u, v) and gives their inner product. If c is a local parameterization,
then the matrix representation of the quadratic form is given by

Ip =

[
cTu cu cTu cv

cTv cu cTv cv

]
. (5.17)

We will use the symbol Ip to represent both the quadratic form and its
matrix representation. Note that each element of Ip is an inner product
between vectors in R3 and that Ip is symmetric and positive definite. If
a parameterization is orthogonal, only the diagonal terms are nonzero.

The first fundamental form can be used to define the metric tensor
for a surface. The metric tensor is given by the square root of the first
fundamental form and is used to normalize tangent vectors. We define
the matrix Mp : R2 → R2 as the positive definite matrix which satisfies

Ip = Mp ·Mp.

In the case that the parametrization is orthogonal, Mp has the form

Mp =

[
‖cu‖ 0

0 ‖cv‖

]
. (5.18)

(The metric tensor described here is the square root of the Riemannian
metric used in differential geometry.)

At each point on a surface S, we can define an outward pointing unit
normal by taking the cross product between the vectors that define the

244

tangent space. We identify the set of all unit vectors in R3 with S2, the
unit sphere in R3. The Gauss map N : S → S2 gives the unit normal at
each point on the surface S. In local coordinates,

N(u, v) =
cu × cv
|cu × cv|

. (5.19)

For smooth, orientable surfaces, the Gauss map is a well defined, differ-
entiable mapping. We write n = N(u, v) for the unit normal at a point
on the surface.

The directional derivative of the Gauss map defines the second funda-
mental form for a surface. The second fundamental form is a measure of
the curvature of a surface. In a local coordinate chart, it is represented
by a map IIp : R2 × R2 → R: which has a matrix representation

IIp =

[
cTunu cTunv

cTv nu cTv nv

]
, (5.20)

where p = c(u, v), nu := ∂n
∂u , and nv := ∂n

∂v . This matrix describes the
rate of change of the normal vector projected onto the tangent plane. It
may be interpreted as follows: if p(s) ∈ S is a curve lying on S that is pa-
rameterized by arc length and whose tangent vector is p′, then (p′)T IIpp

′

gives the usual curvature of the spatial curve p.
For our purposes, it will be convenient to scale the second fundamental

form and define the curvature tensor for a surface. For an orthogonal set
of coordinates, the curvature tensor is a mapping K : R2 → R2 defined
as

Kp = M−T
p IIpM

−1
p =




cTunu
‖cu‖2

cTunv
‖cu‖‖cv‖

cTv nu
‖cu‖‖cv‖

cTv nv
‖cv‖2



 . (5.21)

The factors of M−1
p are normalization factors which account for scaling

present in the local coordinate chart for the surface.
The curvature tensor can also be computed in terms of a special coor-

dinate frame called the normalized Gauss frame. If c(u, v) is an orthog-
onal chart, then we define the normalized Gauss frame as

[
x y z

]
=
[
cu
‖cu‖

cv
‖cv‖ n

]
. (5.22)

The normalized Gauss frame provides an orthonormal frame at each point
on the surface. In terms of this frame, the curvature tensor is given by

Kp =

[
xT

yT

] [
nu
‖cu‖

nv
‖cv‖

]
, (5.23)

which can be interpreted as a measure of how the unit normal varies across
the surface, as projected on the tangent plane. Again, a normalization

245

O

R2

u

v
z y

xp(t)

C
c

Figure 5.19: The contact frame is a moving frame along a curve p(t).

factor is present to account for scaling due to the parameterization. If
the surface is flat, then nu = nv = 0 and Kp = 0.

Finally, we define the torsion form. For a curve, the torsion measures
the rate of change of curvature along the curve. The torsion of a surface is
a measure of how the Gauss frame twists as we move across the surface,
again projected onto the tangent plane. To compute the torsion, we
only need to keep track of how either x or y changes, since they are
orthonormal. We define the torsion form T : R2 → R as

Tp = yT
[
xu

‖cu‖
xv

‖cv‖

]
=
[

cT
v cuu

‖cu‖2‖cv‖
cT

v cuv

‖cu‖‖cv‖2

]
, (5.24)

where xu and xv denote the partial derivative of x with respect to u and v,

cuu := ∂2c
∂u2 , and cuv := ∂2c

∂u∂v . Note that the torsion form is represented as
a row vector, not a matrix. The torsion form is related to the Christoffel
symbols for a surface parameterization (see [27]). If a surface is flat, then
Tp = 0.

Given a parameterization, (Mp,Kp, Tp) are collectively referred to as
the geometric parameters of the surface. These parameters describe the
local geometry of the surface and play an important role in the kinematics
of contact which we will pursue in the section that follows.

Let p(t) ∈ S be a curve on the surface of the object and define the
contact frame along the curve to be the frame C which coincides with
the Gauss frame at time t (see Figure 5.19).2 We wish to determine the
motion of the contact frame as a function of the geometric parameters
and the velocity of the curve. If we fix a frame O in the object then the
motion of the frame C is given by the rigid transformation goc(t) ∈ SE(3).
We assume p(t) lies in a single coordinate chart c : U → R3 and we let
α(t) = c−1(p(t)) represent the local coordinates.

Lemma 5.10. Induced velocity of the contact frame
The (body) velocity of the contact frame C relative to the reference frame

2This is different from our previous convention, where we choose the z-axis along
the inward pointing normal.

246

O of the object is given by V boc = (voc, ωoc) where

voc =

[
Mα̇
0

]
(5.25)

ω̂oc =




0 −ωz ωy
ωz 0 −ωx
−ωy ωx 0



 =




0 −TMα̇

TMα̇ 0
KMα̇

−(KMα̇)T 0



 ,

(5.26)

and M , K, and T are the geometric parameters of the surface relative to
the coordinate chart (c, U).

Proof. The position and orientation of the contact frame relative to the
reference frame are given by

poc = p(t) = c(α(t))

Roc =
[
x(t) y(t) z(t)

]
=
[
cu

‖cu‖
cv

‖cv‖
cu×cv

‖cu×cv‖

]
.

The translational component of the body velocity is given by voc = RTocṗoc
which yields

voc =




xT

yT

zT



 ∂c

∂α
α̇ =




xT cu xT cv
yT cu yT cv
zT cu zT cv



 α̇ =

[
Mα̇
0

]
.

To show equation (5.26), we compute the body angular velocity:

ω̂oc = RTocṘoc =




xT

yT

zT



 [ẋ ẏ ż
]

=




0 xT ẏ xT ż
yT ẋ 0 yT ż
zT ẋ zT ẏ 0



 ,

where the zero entries follow because x, y, and z are unit vectors. Now
using the definitions of K, T , and M we have

ω̂oc =




0 −TMα̇

TMα̇ 0
KMα̇

−(KMα̇)T 0



 .

Example 5.6. Geometric parameters of a sphere in RRRR
3

A coordinate chart for the sphere of radius ρ can be obtained by us-
ing spherical coordinates, as shown in Figure 5.20. For the hemisphere
centered about the x-axis, we have

c(u, v) =




ρ cosu cos v
ρ cosu sin v
ρ sinu



 ,

247

u

v

yx

z

Figure 5.20: Spherical coordinate chart for a sphere.

with
U = {(u, v) : −π/2 < u < π/2,−π < v < π}.

The partial derivatives of c with respect to u and v are given by

cu =




−ρ sinu cos v
−ρ sinu sin v

ρ cosu



 cv =




−ρ cosu sin v
ρ cosu cos v

0





and we see that cTu cv = 0 and hence the chart is orthogonal. The curva-
ture, torsion, and metric tensors are:

K =

[
1/ρ 0
0 1/ρ

]
M =

[
ρ 0
0 ρ cosu

]
T =

[
0 −1/ρ tanu

]
.

6.2 Contact kinematics

Consider two objects with surfaces So and Sf which are touching at a
point, as shown in Figure 5.21. We are interested in the motion of the
points of contact across the surfaces of the objects in response to a relative
motion of the objects.

Let po(t) ∈ So and pf (t) ∈ Sf be the positions at time t of the point
of contact relative to two body-fixed frames O and F , respectively. For
simplicity, we will restrict ourselves to the case where motion is contained
in a single coordinate chart for each object. Let (co, Uo) and (cf , Uf) be
charts for the two surfaces, and αo = c−1

o (po) ∈ Uo and αf = c−1
f (pf) ∈

Uf be local coordinates. We will assume that co and cf are orthogonal
representations of the surfaces. Let ψ be the angle of contact, defined as
the angle between the tangent vectors

∂cf

∂uf
and ∂co

∂uo
. We choose the sign of

ψ so that a rotation of ∂co

∂uo
through an angle ψ around the outward normal

248

no

ψ
∂cf

∂uf

O

F

∂co

∂uo

Figure 5.21: Motion of two objects in contact.

of So aligns ∂co

∂uo
with

∂cf

∂uf
(see Figure 5.21). Collecting the quantities

which describe the contact, we call η = (αf , αo, ψ) the contact coordinates
for Sf and So.

Let gof ∈ SE(3) describe the relative position and orientation of Sf
with respect to So. We wish to study the relationship between gof and the
local contact coordinates. To do so, we assume that gof ∈ W ⊂ SE(3),
where W is the set of all relative positions and orientations for which the
two objects are in contact.

The coordinate charts (co, Uo) and (cf , Uf) induce a normalized Gauss
frame at all points in co(Uo) ⊂ So and cf (Uf) ⊂ Sf . We define the
contact frames Co and Cf as the coordinate frames that coincide with
the normalized Gauss frame at po(t) and pf (t), for all t ∈ I, where I is
the interval of interest. We also define a continuous family of coordinate
frames, two for each τ ∈ I, as follows. Let the local frames Lo(τ) and
Lf (τ), be the coordinate frames fixed relative to O and F , respectively,
that coincide at time t = τ with the normalized Gauss frame at po(t) and
pf (t) (see Figure 5.22).

We describe the motion of O and F at time t using local coordinate
frames Lo(t) and Lf (t). Let vlolf = (vx, vy, vz) be the components of the
(body) translational velocity of Lf (t) relative to Lo(t) at time t. Sim-
ilarly, let ωlolf = (ωx, ωy, ωz) be the (body) rotational velocity. Here
(ωx, ωy) are the rolling velocities along the tangent plane at the point
of contact, and ωz is the rotational velocity about the contact normal.
Likewise, (vx, vy) are the linear velocities along the tangent plane, i.e.,
the sliding velocities, and vz is the linear velocity in the direction con-
tact normal. As long as the two bodies remain in contact, vz = 0. In
addition, for pure rolling contact we have vx = vy = 0 and ωz = 0 and
for pure sliding contact we have ωx = ωy = ωz = 0. Since the local
frames are fixed relative to their respective frame of reference, according

249

O

Lo(τ2)

Lo(τ1)

Lo(t) = Co

Figure 5.22: Relation between the one-parameter family of local frames,
Lf (t), and the contact frame, Cf . At time t ∈ I, Lf (t) coincides with
Cf .

to Proposition 2.15 we have Vlolf = Adg−1
flf

Vof or, in components,

V blolf =





vx
vy
vz
ωx
ωy
ωz




=

[
RTflf vof −RTflf p̂oωof

RTflfωof

]
. (5.27)

We also let

Rψ =

[
cosψ − sinψ
− sinψ − cosψ

]
and K̃o = RψKoRψ.

Note that Rψ is the orientation of the x- and y-axes of Cf relative to

the x- and y-axes of Co. Thus, K̃o is the curvature of O at the point of
contact relative to the x- and y-axes of Cf . We call Kf + K̃o the relative
curvature form.

Theorem 5.11. Kinematic equations of contact [72]
The motion of the contact coordinates, η̇, as a function of the relative
motion is given by

α̇f = M−1
f (Kf + K̃o)

−1

([
−ωy
ωx

]
− K̃o

[
vx
vy

])

α̇o = M−1
o Rψ(Kf + K̃o)

−1

([
−ωy
ωx

]
+Kf

[
vx
vy

])

ψ̇ = ωz + TfMf α̇f + ToMoα̇o

0 = vz,

(5.28)

where (vx, vy, vz, ωx, ωy, ωz) = V blolf = Ad−1
gflf

V bof .

250

Before presenting the proof of the theorem, let us note that the equa-
tions of contact only make sense when the relative curvature is nonsingu-
lar. An example of a singular relative curvature occurs when one object
is concave and the other is convex, and both have the same radius of cur-
vature. In this case, small motions of the object can cause large motions
of the contact and continuity is lost. To avoid this possibility, we shall
assume that all manipulation occurs in an open set on which the relative
curvature is invertible.

Proof of theorem. We perform all calculations using body velocities and
hence temporarily drop the superscript b. Since the frame Lf (t) is fixed
relative to the frame F , the velocity of Lf (t) relative to F is given by
Vflf = 0. Therefore, using the velocity relationships from Chapter 2,

Vfcf
= Ad−1

glf cf
Vflf + Vlf cf

= Vlf cf
. (5.29)

Similarly, we find that

Voco
= Ad−1

gloco
Volo + Vloco

= Vloco
. (5.30)

We now compute the velocity of Cf relative to Lo(t) via two intermediate
frames, namely Lf (t) and Co.

At time t, the position and orientation of Cf relative to Lf (t) are
plf cf

= 0 and Rlf cf
= I. Thus,

Vlocf
= Vlolf + Vlf cf

(5.31)

and since pcocf
= 0,

Vlocf
=

[
RTcocf

0

0 RTcocf

]
Vloco

+ Vcocf
. (5.32)

Combining equations (5.29) through (5.32) yields

Vlolf + Vfcf
=

[
RTcocf

0

0 RTcocf

]
Voco

+ Vcocf
. (5.33)

We now find the values of each of the quantities in equation (5.33) in
terms of the geometric parameters and motion parameters. First, we
observe that

pcocf
= 0

Rcocf
=

[
Rψ 0
0 1

]
=⇒

vcocf
= 0

ωcocf
=
[0

0
ψ̇

] (5.34)

and, by definition, Vlolf = (vx, vy, vz, ωx, ωy, ωz).

251

Second, according to Lemma 5.10,

vfcf
=

[
Mf α̇f

0

]

ω̂fcf
=




0 −TfMf α̇f

TfMf α̇f 0
KfMf α̇f

−(KfMf α̇f)
T 0




(5.35)

and

voco
=

[
Moα̇o

0

]

ω̂oco
=




0 −ToMoα̇o

ToMoα̇o 0
KoMoα̇o

−(KoMoα̇o)
T 0



 .
(5.36)

Substituting equations (5.34) through (5.36) into equation (5.33) and
equating components, we get

[
Mf α̇f

0

]
+




vx
vy
vz



 =

[
RψMoα̇o

0

]



 KfMf α̇f

TfMf α̇f



+




ωy
−ωx
ωz



 =




0
0

ψ̇



−



 RψKoMoα̇o

ToMoα̇o



 .

(5.37)

After some algebraic manipulation, we can write equation (5.37) in the
form given by equation (5.28).

A common situation in grasping is to assume that the fingers roll
without slipping on the object. In this case we can simplify the contact
kinematics.

Corollary 5.11.1. The contact coordinates for rolling contact evolve
according to

α̇f = M−1
f (Kf + K̃o)

−1

[
−ωy
ωx

]

α̇o = M−1
o Rψ(Kf + K̃o)

−1

[
−ωy
ωx

]

ψ̇ = TfMf α̇f + ToMoα̇o.

(5.38)

Example 5.7. Sphere rolling on a plane
Consider a spherical finger of radius ρ rolling on a plane, as shown in
Figure 5.23. The local coordinates of the plane are chosen to be co(u, v) =

252

F

O

Figure 5.23: Spherical finger rolling on a plane. The finger is only allowed
to roll on the object and not slip or twist.

(u, v, 0). The sphere requires multiple coordinate charts to describe the
entire surface, so we shall restrict ourselves to the chart

cf (u, v) =




ρ cosu cos v
−ρ cosu sin v

ρ sinu



 ,

where ρ is the radius of the sphere and −π/2 < u < π/2, −π < v < π.
The curvature, torsion, and metric tensors are:

Ko =

[
0 0
0 0

]
Kf =

[
1/ρ 0
0 1/ρ

]

Mo =

[
1 0
0 1

]
Mf =

[
ρ 0
0 ρ cosuf

]

To =
[
0 0

]
Tf =

[
0 −1/ρ tanuf

]
.

The equations governing the evolution of the contact point are





u̇f
v̇f
u̇o
v̇o
ψ̇




=





0
secuf
−ρ sinψ
−ρ cosψ
− tanuf




ωx +





−1
0

−ρ cosψ
ρ sinψ

0




ωy. (5.39)

6.3 Grasp kinematics with rolling

We are now in a position to describe the grasp kinematics when the
fingers are allowed to roll and possibly slide on the object (depending on
the contact model). Figure 5.24 shows the coordinate frames which we
shall use. We assume that the finger and object shapes are completely
known and that local, orthogonal, surface parameterizations are available.

253

O

P SjSi

FjCi

Figure 5.24: Grasp coordinate frames for moving contacts.

Abstractly, the derivation of the grasp kinematics is identical to the
fixed contact case except that the grasp map and hand Jacobian depend
on the instantaneous contact location, which in turn depends on ηi, the
contact coordinates for each finger. Thus, the contact kinematics have
the form

Jh(θ, xo, η)θ̇ = GT (η)V bpo

η̇i = Ai(ηi)V
b
ofi
,

(5.40)

where η = (η1, . . . , ηk) ∈ R5k is the vector of contact coordinates and
Ai(ηi) ∈ R5×6 encodes the contact kinematics for each finger, as given
in equation (5.28). One additional fact is needed to extend the previous
analysis to the moving contact case: BTci

V boci
= 0. This condition is a

statement that the contact point is not allowed to move in any of the
constrained directions. A complete derivation is left as an exercise.

Equation (5.40) describes the grasp kinematics in terms of a set of
ordinary differential equations. To analyze the properties of the grasp,
we make use of the following result. Let W ⊂ SE(3) be the set of all
configurations gof for which the two objects are in contact.

Proposition 5.12. Smooth dependence of η on gof

There is a smooth local bijection between η ∈ R5 and gof ∈ W ⊂ SE(3)
if the matrix

Kf +RψKoR
T
ψ

is full rank.

The proof of this proposition requires application of the implicit function
theorem to the mapping η 7→ gof ∈W and can be found in [77].

254

Since ηi is a smooth function of gof = g−1
po gpfi

and gpfi
is a smooth

function of θ, we can write this constraint as

Jh(θ, xo)θ̇ = GT (θ, xo)V
b
po. (5.41)

where xo := gpo. Equation (5.41) is a direct extension of equation (5.15)
to the moving contact case. All of the definitions and properties which
held for fixed contact grasps also hold for moving contact grasps.

For most applications, finding η as a function of gof is not computa-
tionally feasible and we must use η directly. To make this explicit, let
ηi = (αfi

, αoi
, ψi) represent the contact coordinates for the ith contact.

In order to calculate Jh and G, we must compute the transformations
Ad−1

gsici
and AdT

g−1
oci

, which are the only quantities that vary with η. In

fact, since

Ad−1
gsici

=
(
Adgsip

Adgpo
Adgoci

)−1
= Ad−1

goci
Ad−1

gpo
Ad−1

gsip
,

the only new quantity which really needs to be calculated is Ad−1
goci

.

Without loss of generality, we assume that the contact frame is aligned
with the normalized Gauss frame for the object and hence

Roci
=
[
∂coi

∂αoi

M−1
oi

noi

]
,

where noi
is the outward pointing surface normal. Furthermore, poci

is
just the contact location coi

(αi) and hence

goci
=

[[
∂coi

∂αoi

M−1
oi

noi

]
coi

(αi)

0 1

]
. (5.42)

Finally, although in principle the contact coordinates can be obtained
by integrating the contact kinematics, in practice it is much more likely
that one would need to measure each ηi directly in order to maintain
accuracy (see, for example, [7]). These and other implementation details
do not alter the overall structure and properties of the grasp, but can
have a dramatic effect on the performance of the system.

255

7 Summary

The following are the key concepts covered in this chapter:

1. A contact is described by a mapping between forces exerted by a
finger at a point on the object and the resultant wrenches in some
object reference frame. The contact basis Bci

: Rmi → Rp describes
the set of wrenches that can be exerted by the finger, written in the
contact coordinate frame. For contacts with friction, the friction
cone FCci

⊂ Rmi models the range of allowable contact forces that
can be applied. The friction cone satisfies the following properties:

(a) FCci
is a closed subset of Rmi with non-empty interior.

(b) f1, f2 ∈ FCci
=⇒ αf1 + βf2 ∈ FCci

for α, β > 0.

2. A grasp is a collection of fingers which exert forces on an object.
The net object wrench is determined from the individual contact
forces by the relationship Fo = Gfc, where G ∈ Rp×m is the grasp
map:

G =
[
AdT

g−1
oc1

Bc1 · · · AdT
g−1

ock

Bck

]
.

AdT
g−1

oci

: Rp → Rp is a the wrench transformation between the

object and contact coordinate frames. The contact forces must all
lie within the friction cone FC = FCc1 × · · · × FCck

.

3. A grasp is force-closure when finger forces lying in the friction cone
span the space of object wrenches

G(FC) = Rp.

A grasp is force-closure if and only if the grasp map is surjective
and there exists an internal force fN which satisfies GfN = 0 and
fN ∈ int(FC).

4. The fundamental grasp constraint describes the relationship be-
tween finger velocity and object velocity:

Jh(θ, xo)θ̇ = GT (θ, xo)ẋo,

where θ ∈ Rn is the vector of finger joint angles and xo := gpo is the
configuration of the object frame relative to the palm frame. The
hand Jacobian Jh ∈ Rm×n is defined as

Jh =





BTc1 Ad−1
gs1c1

Jss1f1(θf1) 0

. . .

0 BTck
Ad−1

gskck
Jsskfk

(θfk
)



 ,

256

where Jssifi
is the spatial Jacobian for the ith finger and Ad−1

gsici
is

the twist transformation between the base and contact frames. For
contacts in which rolling does not occur, G is a constant matrix.

5. The relationships between the forces and velocities in a multifin-
gered grasp are summarized in the following diagram:

JTh

θ̇

τ fc

ẋc

finger contact object

velocity

domain

force

domain
Fo

V bpo

Jh GT

G

6. A grasp is manipulable when arbitrary motions can be generated
by the fingers

R(GT) ⊂ R(Jh).

A force-closure grasp is manipulable if and only if Jh is surjective.

7. The contact kinematics describe how the contact points move along
the surface of the fingers and object. For an individual rolling
contact, the contact kinematics are

α̇f = M−1
f (Kf + K̃o)

−1

[
−ωy
ωx

]

α̇o = M−1
o Rψ(Kf + K̃o)

−1

[
−ωy
ωx

]

ψ̇ = TfMf α̇f + ToMoα̇o.

where (Mi,Ki, Ti) are the geometric parameters for a given coordi-
nate chart on the surface. The contact kinematics allow G and Jh
to be computed using η = (αf , αo, ψ) rather than solving for η in
terms of gpo.

8 Bibliography

This chapter grew out of notes written for a workshop organized by Roger
Brockett for the American Mathematical Society Annual Meeting in Li-
ousville, Kentucky in January of 1989 [77]. Early treatments of the kine-
matics and statics of grasping can be found in the dissertations of Salis-
bury [101] and Kerr [48], on which much of Section 2 is based. See also the

257

work of Nakamura [80]. The material on force-closure and grasp planning
is drawn from a number of sources, most notably Nguyen [82] and the
seminal paper by Mishra, Schwartz, and Sharir [71]. Finger kinematics
and issues of manipulability were described in Li et al. [62].

The kinematics of rolling contact were originally derived by Mon-
tana [72] and have been extended to the case of compliant contacts [73].
An alternate derivation of the equations of rolling contact can be found
in [77].

258

9 Exercises

1. Construct the grasp map for the grasps shown below and determine
if the grasp is force-closure. Assume that all contacts are frictionless
point contacts.

(a) (c)(b)

2. Construct the grasp map for the grasps shown below and write
the friction cone conditions with respect to the contact basis you
choose. Determine if the grasp is force-closure. Assume that all
contacts are point contacts with friction.

(d)

µ = tan 15◦ µ = tan 45◦ µ > 0 µ > 0

(a) (b) (c)

3. Construct the grasp map for the grasps shown below and write
the friction cone conditions with respect to the contact basis you
choose. Determine if the grasp is force-closure. Assume that all
contacts are soft-finger contacts.

(b)

µ = tan 15◦

γ > 0

µ > 0

γ > 0

(a)

4. Additional contact models

259

Derive the wrench basis and friction cone for the contact models
shown below. Assume the coefficient of sliding friction is µ > 0.

Plane contactLine contact

(a) (b)

5. Verify the lower bounds given in Table 5.3 by constructing the fol-
lowing objects. Assume that vertex contacts are not allowed.

(a) Construct a 2-D object which cannot be grasped by two point-
contact-with-friction fingers and µ = tan 30◦. Prove explicitly
that the object cannot be grasped.

(b) Construct a 3-D object which cannot be grasped by three
point-contact-with-friction fingers and µ = tan 15◦. Prove ex-
plicitly that the object cannot be grasped.

(c) True or false: For any convex 3-D object, a force-closure grasp
can be constructed using at most three soft-finger contacts at
smooth points (i.e., no vertex contacts). Prove or construct a
counterexample.

(d) (contributed by J. Canny). Prove that for any 3-D object with
smooth boundary (not just piecewise smooth), a force-closure
grasp can be constructed using at most three point contacts
with friction or two soft-finger contacts.

6. When controlling a multifingered robot hand, it is important to
insure that desired contact forces lie strictly inside the friction cone
to avoid slip. That is, we require that for any Fo, there exists fc
such that Fo = Gfc and fc ∈ int(FC). Such a grasp is said to
be prehensile. Let FC be the friction cone defined in Section 2.
Show that if G(FC) = Rp, then G(int(FC)) = G(FC) using the
following steps:

(a) Show that F ∈ int(FC) =⇒ αF ∈ int(FC) for all α > 0.

(b) Show F ∈ int(FC), F ′ ∈ FC =⇒ F + F ′ ∈ int(FC).

260

(c) Show that there exists fN ∈ int(FC) such that GfN = 0.

(d) Complete the proof by showing that G(FC) ⊆ G(int(FC)).

Hence, a grasp is prehensile if and only if the grasp is force-closure.

7. Prove Theorem 5.6: Show that a planar grasp with two point con-
tacts with friction is force-closure if and only if the line connecting
the contact point lies inside both friction cones.

8. For the objects given below, find all force-closure grasps using two
contacts with friction. On each the objects, draw the independent
contact regions corresponding to a maximal square contained in a
force-closure region. Assume that the coefficient of friction for all
contacts is µ = tan 45◦.

1

2

(a) (b) (c)

1

120◦120◦

60◦ 60◦

60◦ 60◦

60◦

1 2

9. Find all the force-closure grasps for two point contacts with friction
grasping a circle. Express your answer as a sketch of the force-
closure regions versus the two finger locations on the circle. Indicate
on the circle a set of independent contact regions corresponding to
a maximal square contained in the force-closure region.

10. Derive the contact constraints for the hands shown below. De-
termine if the grasps are force-closure and/or manipulable at the
configuration shown.

(b)(a)

11. Calculate the contact constraints for the grasp shown in Figure 5.17
with l3 > 0.

261

12. Consider the two-fingered grasp shown in Figure 5.17. Equate the
locations of the fingertips with the contact locations on the box.
Differentiate this algebraic constraint and show that it is equivalent
to the answer given in the example at the end of Section 5.

13. Give an example of two surfaces in contact which has singular rel-
ative curvature form.

14. Calculate the geometric parameters for an ellipsoid, a parabaloid,
and a torus.

15. The figure below shows an elliptic fingertip in contact with a flat
object. The principal axes of the ellipse have length a, b, and c,
respectively.

O F

(a) Give an orthonormal coordinate chart for the fingertip around
the point of contact as shown in the figure.

(b) Assume the fingertip is in rolling contact with the object. De-
rive the equations of contact.

(c) Compute the velocity of the fingertip relative to the object
which satisfies rolling constraint and produces a contact ve-
locity of α̇o = (0, v), v ∈ R.

16. Derive the equations of contact for a unit sphere in rolling contact
with a sphere of radius ρ.

17. Kinematics of planar contact
The kinematics of contact for two planar objects can be obtained by
restricting equation (5.28) to the plane. Let gof = (p,R) ∈ SE(2)
be the relative configuration of the objects.

(a) Let so ∈ R be the point of contact on the object and sf ∈ R be
the point of contact on the finger. Assume that the surface is
parameterized by arc length, so that ‖ ∂ci

∂si
‖ = 1 where ci : R→

R2 is a coordinate chart. Show that the contact coordinates

262

η = (sf , so) evolve according to

ṡf = (Ko +Kf)
−1

(
∂co
∂so

T

Ṙnf +Ko
∂co
∂so

T

(Ṙcf + ṗ)

)

ṡo = (Ko +Kf)
−1

(
−∂co
∂so

T

Ṙnf +Kf
∂co
∂so

T

(Ṙcf + ṗ)

)

(b) Derive the equations of contact for a planar, elliptical finger
rolling against a flat object.

18. Consider the coordinated lifting problem shown below. Derive the
constraints between the beam velocity and the robot joint velocities.
Assume that each finger firmly grips the end of the beam and that
the forces are transmitted to the beam at the center of the gripper.

19. Rederive the contact kinematics when the finger and object surfaces
are given as the level sets of functions hf : R3 → R and ho : R3 → R

(for example, a sphere of radius ρ satisfies hf (x) = x2
1+x

2
2+x

2
3−ρ2 =

0). Test your solution using an ellipsoid rolling on a plane.

263

264

Chapter 6

Hand Dynamics and

Control

In this chapter, we study the dynamics and control of a set of robots
performing a coordinated task. Our primary example will be that of a
multifingered robot hand manipulating an object, but the formalism is
considerably broader. It allows a unified treatment of dynamics and con-
trol of robot systems subject to a set of velocity constraints, generalizing
the treatment given in Chapter 4.

1 Lagrange’s Equations with Constraints

For an open-chain manipulator, the equations of motion can be derived
using Lagrange’s equations or other similar methods. This involves find-
ing a set of generalized coordinates which completely and minimally pa-
rameterize the configuration space of the system, and then writing the
dynamics in terms of these coordinates and the corresponding generalized
forces.

For a multifingered robot hand, the configuration of the system de-
pends on the joint angles for the fingers as well as the position and ori-
entation of the object. These quantities are not independent, however,
since their velocities are related by the grasping constraint. Thus, we
cannot apply Lagrange’s equations directly. Finding a set of generalized
coordinates in such examples is non-trivial and, in some cases, impossible.

To overcome this difficulty, we rederive the equations of motion for a
mechanical system in the presence of constraints. That is, rather than
attempting to eliminate the constraints by an appropriate choice of coor-
dinates, we seek to incorporate the constraints directly into the equations
of motion. The remainder of this section contains a sketch of this deriva-
tion. A more complete derivation can be found in Rosenberg [99] or

265

Pars [89].
For simplicity, we assume throughout this section that the configura-

tion space Q is an open subset of Rn with coordinates q = (q1, . . . , qn).
More general configuration spaces can be handled by an appropriate
choice of local coordinates.

1.1 Pfaffian constraints

A constraint on a mechanical system restricts the motion of the system by
limiting the set of paths which the system can follow. A simple example
is the case of two particles attached by an inextensible, massless rod.
The configuration of each particle is described as a point pi ∈ R3, but all
trajectories of the particles must satisfy the algebraic constraint

‖p1 − p2‖2 = L2, (6.1)

where L is the length of the rod. The constraint acts through the ap-
plication of constraint forces, which modify the motion of the system to
insure that the constraint is always satisfied. In the case of the two inter-
connected particles, the constraint force corresponds to the tension in the
rod, which transmits forces applied on one particle to the other particle,
and causes the distance between the particles to remain fixed.

The constraint in equation (6.1) is an example of a holonomic con-
straint. More generally, a constraint is said to be holonomic if it restricts
the motion of the system to a smooth hypersurface in the (unconstrained)
configuration space Q. Holonomic constraints can be represented locally
as algebraic constraints on the configuration space,

hi(q) = 0, i = 1, . . . , k. (6.2)

Each hi is a mapping from Q to R which restricts the motion of the
system. We assume that the constraints are linearly independent and
hence the matrix

∂h

∂q
=





∂h1

∂q1
· · · ∂h1

∂qn

. . .
∂hk

∂q1
· · · ∂hk

∂qn





is full row rank. (In the classical mechanics literature, constraints of
the form in equation (6.2) are sometimes referred to as scleronomic con-
straints. Holonomic and scleronomic come from Greek and mean re-
spectively “all together lawful” and “rigid” respectively. Time-varying
constraints on q are called rheonomic, for “flowing.” We will not use the
terms scleronomic and rheonomic in this book, only the term holonomic.)

Since holonomic constraints define a smooth hypersurface in the con-
figuration space, it is possible to “eliminate” the constraints by choosing
a set of coordinates for this surface. These new coordinates parameterize

266

all allowable motions of the system and are not subject to any further
constraints. In fact, this is precisely the technique which we use when
writing down the motion of a rigid body in terms of the position and
orientation of a single coordinate frame rather than the (constrained)
motion of the individual points of the rigid body.

The constraint forces for a set of holonomic constraints of the form in
equation (6.2) are linear combinations of the gradients of the constraint
functions hi : Q → R. Letting h : Q → Rk represent the vector-valued
constraint function, we can thus write the constraint force as

Γ =
∂h

∂q

T

λ,

where λ ∈ Rk is the vector of relative magnitudes of the constraint forces.
These constraint forces can be viewed as acting normal to the constraint
surface, with the magnitude of the forces chosen to insure that the system
remains on the constraint surface defined by equation (6.2). Note that no
work is done by the constraints when the system is moved along feasible
trajectories since

Γ · q̇ = λT
∂h

∂q
q̇ = λT

d

dt

(
h(q)

)
= 0.

A fundamentally different type of constraint occurs in the context of
multifingered grasping, where the allowable motions of the system are
restricted by the velocity constraint

Jh(θ, xo)θ̇ = GT (θ, xo)V
b
po.

More generally, for a system with configuration space Q, we consider
velocity constraints of the form

A(q)q̇ = 0,

where A(q) ∈ Rk×n represents a set of k velocity constraints. A constraint
of this form is called a Pfaffian constraint. We assume that the constraints
are pointwise linearly independent and hence that A(q) is full row rank
at q ∈ Q. For a multifingered hand, the matrix A has the form

A(q) =
[
Jh(q) −GT (q)

]
,

where q = (θ, x) and x represents a choice of local coordinates for the
object position and orientation.

Since a Pfaffian constraint restricts the allowable velocities of the sys-
tem but not necessarily the configurations, we cannot always represent
it as an algebraic constraint on the configuration space. A Pfaffian con-
straint is said to be integrable if there exists a vector-valued function

267

h : Q→ Rk such that

A(q)q̇ = 0 ⇐⇒ ∂h

∂q
q̇ = 0.

Thus, an integrable Pfaffian constraint is equivalent to a holonomic con-
straint. It is important to note that we do not require that A = ∂h

∂q ,
but only that they define the same subspace of the allowable velocities at
every q ∈ Q.

A Pfaffian constraint which is not integrable is an example of a non-
holonomic constraint. Nonholonomic constraints of this type occur when
the instantaneous velocities of the system are constrained to an n − k
dimensional subspace, but the set of reachable configurations is not re-
stricted to some n−k dimensional hypersurface in the configuration space.
As we shall see in the next chapter, not all Pfaffian constraints are in-
tegrable, and hence we must extend our derivation of the equations of
motion to account for this case.

Despite the possibility that a constraint may be nonholonomic, it is
still possible to speak of the forces of constraint. They are the forces
which are generated by a set of Pfaffian constraints so as to insure that
the system does not move in the directions given by the rows of the
constraint matrix A(q). The constraint forces at a configuration q ∈ Q
have the form

Γ = AT (q)λ,

where λ ∈ Rk is the vector of relative magnitudes of the constraint forces.
If the constraint happens to be integrable, then this is identical to the

holonomic case since AT (q) and ∂h
∂q

T
will have the same range space.

The constraint forces for a set of Pfaffian constraints prevent motion
of the system in directions which would violate the constraints. In order
to include these forces in the dynamics, we must add one additional
assumption about the nature of the constraints. Namely, we assume that
the forces which are generated by the constraints do no work on the
system, and hence conserve energy. This assumption is often referred to
as d’Alembert’s principle.

The assumption that the constraints do no work is easy to justify in
many situations. In particular, if a system is subject to rolling, either
about a point or along a surface, then the frictional forces due to this
rolling are very small and can usually be ignored. However, if some
sliding occurs in addition to rolling, the work done depends upon the
magnitude of the normal force, and the constraints cease to be workless.
In cases such as these, friction and other nonconservative forces can be
incorporated by ignoring them initially, and then adding them as external
forces once the dynamics have been derived.

268

1.2 Lagrange multipliers

We can now proceed to derive the equations of motion for a mechanical
system with configuration q ∈ Rn subject to a set of Pfaffian constraints.
Let L(q, q̇) represent the Lagrangian for the unconstrained system and
let the constraints have the form

A(q)q̇ = 0 A(q) ∈ Rk×n. (6.3)

We assume that constraints are everywhere smooth and linearly indepen-
dent and that the forces of constraint do no work on the system.

The equations of motion are formed by considering the constraint
forces as an additional force which affects the motion of the system.
Hence, the dynamics can be written in vector form as

d

dt

∂L

∂q̇
− ∂L

∂q
+AT (q)λ−Υ = 0, (6.4)

where the columns of AT form a non-normalized basis for the constraint
forces and λ ∈ Rk gives the relative magnitudes of the forces of constraint.
As before, Υ represents nonconservative and externally applied forces.

The scalars λi, . . . , λk are called Lagrange multipliers. They are de-
termined by solving equations (6.3) and (6.4) for the n + k variables q
and λ, insuring that no motion occurs in the constrained directions, and
hence equation (6.3) holds for all time. In general, each λi will be a
function of q, q̇, and Υ, since the constraint forces vary with the con-
figuration, velocity, and applied force. Solving for these multipliers and
substituting them back into the equations of motion gives a description
of the dynamics of the system.

In the case that the Lagrangian has the form L(q, q̇) = 1
2 q̇
TM(q)q̇ −

V (q) (kinetic minus potential), we can derive an explicit formula for the
Lagrange multipliers. Using the notation from Chapter 4, the equations
of motion can be written as

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) +AT (q)λ = F, (6.5)

where F corresponds to the vector of external forces and N(q, q̇) includes
nonconservative forces as well as potential forces. Differentiating the
constraint equation (6.3) yields

A(q)q̈ + Ȧ(q)q̇ = 0

and, solving for q̈ from equation (6.5), we obtain

(AM−1AT)λ = AM−1(F − Cq̇ −N) + Ȧq̇,

where we suppress the dependence on q and q̇. The configuration depen-
dent matrix AM−1AT is full rank if the constraints are independent, and

269

y

θ

mg

x

Figure 6.1: Idealized planar pendulum.

hence the Lagrange multipliers are

λ = (AM−1AT)−1
(
AM−1(F − Cq̇ −N) + Ȧq̇

)
. (6.6)

Using this equation, the Lagrange multipliers can be computed as a func-
tion of the current state, q and q̇, and the applied forces, F . The equa-
tions of motion are now given by equation (6.5) with λ defined as in
equation (6.6).

Example 6.1. Dynamics of an idealized planar pendulum
Consider an idealized pendulum, with its mass concentrated at the tip, as
shown in Figure 6.1. The mass is a particle with two degrees of freedom;
the pendulum mechanism acts as a constraint which restricts the motion
to a single degree of freedom. Rather than parameterize the system in
terms of the angular variable θ, we instead derive the equations using the
method of Lagrange multipliers.

The configuration of the system is given by q = (x, y) ∈ R2. The
constraint that the length of the pendulum remain fixed can be written
as

x2 + y2 = l2.

Differentiating this constraint and dividing by two, we obtain the Pfaffian
constraint

[
x y

]
︸ ︷︷ ︸
A(q)

[
ẋ
ẏ

]
= 0.

The (unconstrained) Lagrangian is simply L(q, q̇) = 1
2m(ẋ2 + ẏ2)−mgy.

Substituting into equations (6.5), Lagrange’s equations for the con-
strained system become

[
m 0
0 m

] [
ẍ
ÿ

]
+

[
0
mg

]
+

[
x
y

]
λ = 0.

270

The Lagrange multiplier λ is determined from equation (6.6), which gives

λ = (AM−1AT)−1
(
AM−1(Q− Cq̇ −N)− Ȧq̇

)

=
m

x2 + y2
(−gy − ẋ2 − ẏ2) = −m

l2
(gy + ẋ2 + ẏ2),

and hence the equations of motion are

[
m 0
0 m

] [
ẍ
ÿ

]
+

[
0
mg

]
− 1

l2

[
x
y

] (
mgy +m(ẋ2 + ẏ2)

)
= 0.

Note that this is a second-order differential equation in two variables, x
and y, even though the actual system only has one degree of freedom.
Thus, we have increased the number of variables required to represent the
motion of the system. On the other hand, we have an explicit measure
of the tension in the rod supporting the mass, namely

Tension =
∥∥
[
x
y

]
λ
∥∥ =

mg

l
y +

m

l
(ẋ2 + ẏ2).

1.3 Lagrange-d’Alembert formulation

It is convenient and useful to rederive the equations of motion without
explicitly solving for the instantaneous constraint forces present in the
system. In essence, this proceeds by projecting the motion of the system
onto the feasible directions and ignoring the forces in the constrained
directions. In doing so, we will be able to get a more concise description
of the dynamics which is in a form well suited for closed-loop control.

At a given configuration q ∈ Rn, the instantaneous set of directions
in which the system is allowed to move is given by the null space of
the constraint matrix, A(q). We adopt the classical notation and call a
vector δq ∈ Rn which satisfies A(q)δq = 0 a virtual displacement. If F
is a generalized force applied to the system, then we call δW = F · δq
the virtual work due to a force F acting along a virtual displacement δq.
D’Alembert’s principle states that the forces of constraint do no virtual
work. Hence,

(AT (q)λ) · δq = 0 for A(q)δq = 0.

It is important to keep in mind that δq is not the same as q̇. The general-
ized velocity q̇ satisfies both the velocity constraints and the equations of
motion. The virtual displacement only satisfies the constraints. Hence,
d’Alembert’s principle asserts that constraint forces do no work for any
instantaneous motion which satisfies the constraints, not just for the mo-
tion which the system actually follows.

271

To eliminate the constraint forces from equation (6.4), we project the
equations of motion onto the linear subspace generated by the null space
of A(q). Since (ATλ) · δq = 0, equation (6.4) becomes

(
d

dt

∂L

∂q̇
− ∂L

∂q
−Υ

)
· δq = 0, (6.7)

where δq ∈ Rn satisfies
A(q)δq = 0. (6.8)

We call equations (6.7) and (6.8) the Lagrange-d’Alembert equations.
Note that in the case where there are no constraints on the system, δq is
free and equation (6.7) reduces to the usual form of Lagrange’s equations.

To get a more explicit description of the dynamics, we assume that
A(q) has the form

A(q) =
[
A1(q) A2(q)

]
,

where A2(q) ∈ Rk×k is invertible. This can always be achieved locally by
reordering the configuration space variables. We now relabel the config-
uration as q = (q1, q2) ∈ Rn−k × Rk so that

A(q) · δq = 0 ⇐⇒ δq2 = −A−1
2 (q)A1(q)δq1,

where δq1 is free (unconstrained). Making use of this same notation in
the Lagrange-d’Alembert equations yields

(
d

dt

∂L

∂q̇
− ∂L
∂q
−Υ

)
· δq

=

(
d

dt

∂L

∂q̇1
− ∂L
∂q1
−Υ1

)
·δq1+

(
d

dt

∂L

∂q̇2
− ∂L
∂q2
−Υ2

)
·δq2

=

(
d

dt

∂L

∂q̇1
− ∂L
∂q1
−Υ1

)
·δq1+

(
d

dt

∂L

∂q̇2
− ∂L
∂q2
−Υ2

)
·
(
−A−1

2 A1

)
δq1,

and since δq1 is free, the equations of motion become

(
d

dt

∂L

∂q̇1
− ∂L

∂q1
−Υ1

)
−AT1 A−T

2

(
d

dt

∂L

∂q̇2
− ∂L

∂q2
−Υ2

)
= 0. (6.9)

Equation (6.9) is a second-order differential equation in terms of q =
(q1, q2). We can further simplify this equation using the constraint q̇2 =
−A−1

2 A1q̇1 to eliminate q̇2 and q̈2. The evolution of q2 can be retrieved
by reapplication of the constraint equations. This procedure is illustrated
in the next example.

Example 6.2. Dynamics of a rolling disk
Consider the example of a disk rolling on the plane, as shown in Fig-
ure 6.2. The configuration of the disk is given by the xy position in the

272

θ

φ

(x, y)

Figure 6.2: Disk rolling on a plane.

plane, the heading angle θ, and the orientation of the disk with respect
to the vertical, φ. We write q = (x, y, θ, φ) and let ρ denote the radius of
the disk. We take as inputs the driving torque on the wheel, τθ, and the
steering torque (about the vertical axis), τφ.

We make the assumption that the disk rolls without slipping, just as
in the case of a fingertip rolling on an object. This condition can be
written as a set of velocity constraints

ẋ− ρ cos θφ̇ = 0

ẏ − ρ sin θφ̇ = 0
or A(q)q̇ =

[
1 0 0 −ρ cos θ
0 1 0 −ρ sin θ

]
q̇ = 0. (6.10)

These constraints require that the disk roll in the direction in which it
is heading and that the velocity of the disk match the rate at which it is
rolling on the plane. The constraints are everywhere linearly independent.

The Lagrangian for this system is the kinetic energy associated with
the disk, ignoring the constraints. Let m be the mass of the disk, I1 its
inertia about the horizontal (rolling) axis, and I2 its inertia about the
vertical axis. The Lagrangian is

L(q, q̇) =
1

2
m(ẋ2 + ẏ2) +

1

2
I1θ̇2 +

1

2
I2φ̇2.

We can now proceed to derive the equations of motion for the system.
Let δq = (δx, δy, δθ, δφ) represent a virtual displacement of the system.
The Lagrange-d’Alembert equations are given by

([
m 0
m

I1

0 I2

]
q̈ −

[
0
0
τθ
τφ

])
· δq = 0 where

[
1 0 0 −ρ cos θ
0 1 0 −ρ sin θ

]
δq = 0.

From the form of the constraints, we can solve for δx and δy to obtain

δx = ρ cos θδφ

δy = ρ sin θδφ.
(6.11)

273

The equations of motion can now be rewritten as

([
0 0

mρ cos θ mρ sin θ

] [
ẍ
ÿ

]
+

[
I∞ 0
0 I2

] [
θ̈

φ̈

]
−
[
τθ
τφ

])
·
[
δθ
δφ

]
= 0,

and since δθ and δφ are free, the dynamics become

[
0 0

mρ cos θ mρ sin θ

] [
ẍ
ÿ

]
+

[
I∞ 0
0 I2

] [
θ̈

φ̈

]
=

[
τθ
τφ

]
. (6.12)

We can further simplify the equations by reusing the constraints to
eliminate ẋ, ẏ and ẍ, ÿ. Differentiating the constraints, we have

ẍ = ρ cos θφ̈− ρ sin θθ̇φ̇

ÿ = ρ sin θφ̈+ ρ cos θθ̇φ̇,
(6.13)

and substituting into equation (6.12) gives

[
I∞ 0
0 I2 +mρ2

] [
θ̈

φ̈

]
=

[
τθ
τφ

]
, (6.14)

which describes the motion of the system as a second-order differential
equation in θ and φ. Note that for this system the equations of motion
for θ and φ do not depend on x and y, but in general this is not the case.

The motion of the x and y positions of the disk can be retrieved from
the first-order differential equations

ẋ = ρ cos θφ̇

ẏ = ρ sin θφ̇.

Thus, given the trajectory of θ and φ, we can determine the trajectory of
the disk as it rolls along the plane. The splitting of the equations of mo-
tion into a set of second-order equations in a reduced set of variables plus
a set of first-order equations representing the constraints is characteristic
of nonholonomic systems.

1.4 The nature of nonholonomic constraints

The machinery that we have developed in this section allows us to cal-
culate the dynamics of a mechanical system subject to a set of Pfaffian
constraints without trying to integrate the constraints and find a set of
generalized coordinates which completely (and minimally) parameterize
the configuration of the system. In the case that the constraints are inte-
grable, these equations are identical to those obtained by finding a set of
appropriate generalized coordinates. When the constraints are noninte-
grable, it is very important to incorporate the constraints in the proper

274

way. In this section, we try to shed some light on how nonintegrable
constraints affect the mechanics of the system and indicate what can go
wrong if one is not careful.

A common mistake when deriving the equations of motion for a me-
chanical system with nonholonomic constraints is to substitute the con-
straints into the Lagrangian and then apply Lagrange’s equations. This
would seem to eliminate the dependent variables and minimize compu-
tations. As we shall see in a moment, however, this gives the wrong
equations of motion for the system. We have been very careful in this
section to always compute the unconstrained Lagrangian, substitute into
the Lagrange-d’Alembert equations, and then reapply the constraints to
eliminate the dependent variables.

To see what happens when the constraints are used at the wrong time,
consider a three-dimensional, unforced Pfaffian system with configuration
q = (r, s) ∈ R2 × R, constraint

ṡ+ aT (r)ṙ = 0 a(r) ∈ R2,

and Lagrangian L(r, ṙ, ṡ). For simplicity, we assume that both the La-
grangian and the constraints do not depend on the variable s. Define the
constrained Lagrangian as

Lc(r, ṙ) = L(r, ṙ,−aT (r)ṙ).

The constrained Lagrangian is the kinetic minus potential energy of the
system, but evaluated with the constraints taken into account.

Suppose we substitute the constrained Lagrangian into the Lagrange-
d’Alembert equations. Since there is no dependence on either s or ṡ,
these equations yield

d

dt

∂Lc
∂ṙi
− ∂Lc
∂ri

= 0 i = 1, 2.

Expanding the equations using the definition of Lc, we obtain

d

dt

(
∂L

∂ṙi
− ai(r)

∂L

∂ṡ

)
−
(
∂L

∂ri
− ∂L

∂ṡ

∑

j

∂aj
∂ri

ṙj

)
= 0

and, rearranging terms, we can write this equation as
(
d

dt

∂L

∂ṙi
− ∂L

∂ri

)
− ai(r)

(
d

dt

∂L

∂ṡ
− ∂L

∂s

)
=
∂L

∂ṡ

(
ȧi(r)−

∑

j

∂aj
∂ri

ṙi

)
.

(6.15)Notice that the left-hand side of this equation is exactly the Lagrange-
d’Alembert equation for the system. The right-hand side of the equation
represents spurious terms that arise from substituting the constraints

275

into the Lagrangian. This shows that, in general, substituting a set of
Pfaffian constraints into the Lagrangian and then applying the Lagrange-
d’Alembert equations gives the wrong equations.

Suppose now that the constraint is actually holonomic. For simplicity,
we assume that the constraint is explicitly integrable, so that there exists
a function h(r) such that

ai(r) =
∂h

∂ri
.

In this case, the right-hand side of equation (6.15) is

∂L

∂ṡ
(ȧi(r)−

∑

j

∂aj
∂ri

ṙi) =
∂L

∂ṡ

(∑ ∂2h

∂ri∂rj
ṙj −

∑ ∂2h

∂rj∂ri
ṙi

)
,

which is identically zero since mixed partials commute. Hence, if the
constraints happen to be holonomic, then substituting the constraints
into the Lagrangian will give the correct equations of motion.

2 Robot Hand Dynamics

Using the results from the previous section, we now derive the equations
of motion for a system of robots performing a coordinated task. We begin
with a multifingered hand manipulating an object and then show how the
same formalism can be applied to other problems.

2.1 Derivation and properties

The overall dynamics for a multifingered hand grasping an object are
obtained by combining the dynamics of the fingers and the object via
the grasp constraint. Adopting the notation of the previous chapters, the
finger dynamics have the form

Mf (θ)θ̈ + Cf (θ, θ̇)θ̇ +Nf (θ, θ̇) = τ, (6.16)

where θ = (θf1 , . . . , θfk
) ∈ Rn is the vector of joint angles for all of the fin-

gers in the hand and τ ∈ Rn is the corresponding vector of joint torques.
Mf , Cf , and Nf are formed by appropriately stacking the quantities
obtained for the individual fingers:

Mf =




Mf1 0

. . .

0 Mfk



 Cf =




Cf1 0

. . .

0 Cfk



 Nf =




Nf1

...
Nfk



 .

The object dynamics are given by the Newton-Euler equations, de-
rived in Chapter 4. These equations have the form

[
mI 0
0 I

] [
v̇b

ω̇b

]
+

[
ωb ×mvb
ωb × Iωb

]
= F b,

276

where V b = (vb, ωb) is the body velocity of the object, F b is the body
wrench, m is the mass, and I is the moment of inertia matrix, all with
respect to a frame attached at the center of mass. We write xo = (p,R)
for the configuration of the object. If the object is subject to gravity
alone, the dynamics can be written as

[
mI 0
0 I

]
V̇ b +

[
mω̂b 0

0 1
2 (ω̂bI − Iω̂b)

]
V b +

[
RT (m~g)

0

]
= 0, (6.17)

where ~g is a vector in the direction of gravity, usually taken to be ~g =
(0, 0, 1).

In order to apply the Lagrange-d’Alembert equations, it is necessary
to rewrite the Newton-Euler equations in local coordinates. Letting x ∈
R6 be a local parameterization for xo ∈ SE(3), the object dynamics can
be written as

Mo(x)ẍ+ Co(x, ẋ)ẋ+No(x, ẋ) = 0,

which has the same form as the robot dynamics in equation (6.16). It
can be shown that Mo(x) > 0 and Ṁo − 2Co is skew-symmetric (see
Exercise 4).

The fingers and object are connected by the grasp constraints

Jh(θ, x)θ̇ = GT (θ, x)ẋ, (6.18)

written here in local coordinates. We make three assumptions about the
structure of the grasp:

1. The grasp is force-closure and manipulable. Recall that this is
equivalent to the conditions

G(FC) = Rp and R(GT) ⊂ R(Jh)

for all possible configurations.

2. The hand Jacobian is invertible. This condition insures that there
are no redundant motions of the fingers and hence the hand has
exactly the number of degrees of freedom required to complete the
task.

3. The contact forces remain in the friction cone at all times. This
condition is necessary in order to insure that the grasp constraints
in equation (6.18) hold at all times. It is the task of the control law
to insure that this condition holds, since otherwise the object can
slip or drop from the grasp.

The first two assumptions can be relaxed; we discuss those cases in the
next section.

277

The Lagrangian for the composite system is given by

L =
1

2
θ̇TMf θ̇ +

1

2
ẋTMoẋ− Vf (θ)− Vo(x), (6.19)

where Vf and Vo are the potential energy terms due to gravity. Let
q = (θ, x) represent the overall configuration of the system.

We can now apply the results of the previous section to derive the
equations of motion. The velocity constraint in equation (6.18) gener-
ates a constraint on the virtual displacements δθ and δx, namely δθ =
J−1
h GT δx. Making use of this relationship, we can rewrite the Lagrange-

d’Alembert equations as
(
d

dt

∂L

∂q̇
− ∂L

∂q
−
[
τ
0

])
· δq

=

[
d
dt
∂L
∂θ̇
− ∂L

∂θ − τ
d
dt
∂L
∂ẋ − ∂L

∂x

]
·
[
δθ
δx

]

=

(
d

dt

∂L

∂θ̇
− ∂L

∂θ
− τ
)
·
(
J−1
h GT δx

)
+

(
d

dt

∂L

∂ẋ
− ∂L

∂x

)
· δx

= GJ−T
h

(
d

dt

∂L

∂θ̇
− ∂L

∂θ
− τ
)
· δx+

(
d

dt

∂L

∂ẋ
− ∂L

∂x

)
· δx,

where we have used the properties of the inner product in the final step
to isolate δx. Since δx is free,

(
d

dt

∂L

∂ẋ
− ∂L

∂x

)
+GJ−T

h

(
d

dt

∂L

∂θ̇
− ∂L

∂θ

)
= GJ−T

h τ. (6.20)

Equation (6.20) together with the velocity constraints given in equa-
tion (6.18) describe the system completely. Note that equation (6.20)
is a second-order vector equation with n−m rows and equation (6.18) is
a first-order vector equation with m rows.

Since the Lagrangian for the system splits into two separate parts,
the two terms on the left-hand side of equation (6.20) simplify into the
object dynamics and the finger dynamics, respectively. Using this fact
and eliminating θ̇ and θ̈ via the constraints, the equations of motion
become

M̃(q)ẍ+ C̃(q, q̇)ẋ+ Ñ(q, q̇) = F, (6.21)

where q = (θ, x) and

M̃ = Mo +GJ−T
h MfJ

−1
h GT

C̃ = Co +GJ−T
h

(
CfJ

−1
h GT +Mf

d

dt

(
J−1
h GT

))

Ñ = No +GJ−T
h Nf

F = GJ−T
h τ.

(6.22)

278

These equations have the same form as the equations for a single open-
chain manipulator. M̃ is called the the effective mass of the object,
C̃ the effective Coriolis matrix, and Ñ the effective gravitational and
nonconservative forces. These quantities include the dynamics of the
fingers; however, the details of the finger kinematics and dynamics are
effectively hidden in M̃ , C̃, Ñ . The following lemma verifies that these
equations also satisfy the same structural properties as the unconstrained
case.

Lemma 6.1. Structural properties of the equations of motion
Equation (6.21) satisfies the following properties:

1. M̃(q) is symmetric and positive definite.

2. ˙̃M(q)− 2C̃ is a skew-symmetric matrix.

Proof. Since the grasp is assumed to be force-closure and manipulable
and Jh is assumed injective, property 1 follows from its definition. To
show property 2,

˙̃M − 2C̃ = (Ṁo − 2Co) +GJ−T (Ṁf − 2Cf)J
−1GT

+
d

dt

(
GJ−T)MfJ

−1GT −GJ−TMf
d

dt

(
J−1GT

)

The first line is the sum of skew-symmetric pieces. Taking transposes
and using symmetry of Mf inverts the sign of the last line, and hence it
too is skew-symmetric.

Equation (6.21) was derived in terms of a local parameterization of
SE(3). This was necessary since the Lagrange-d’Alembert equations only
make sense for q ∈ Rn. Since SE(3) is not locally Euclidean, we cannot
apply the Lagrange-d’Alembert equations directly in terms of xo ∈ SE(3).
However, having derived the equations of motion in local coordinates, we
can now revert to SE(3) and write the dynamics as

M̃(q)V̇ bo + C̃(q, q̇)V bo + Ñ(q, q̇) = F b, (6.23)

where M̃ , C̃, and Ñ are described precisely as before except using the
global versions of the inertial parameters. The proof of this fact is left as
an exercise. We make use of the local parameterization of the system for
the remainder of this section since it simplifies the exposition.

2.2 Internal forces

In Chapter 5, we saw that if a grasp is force-closure, then there exist
contact forces which produce no net wrench on the object. These forces
are called internal forces. Their presence in the dynamics is seen in the

279

forcing term F = GJ−T
h τ , which maps joint torques into object forces. If

J−T
h τ ∈ N (G), then no net wrench is generated.

However, even if J−T
h τ has no component inN (G), internal forces may

still be present in the system. These internal forces can arise due to the
constraint forces which the Lagrange-d’Alembert equations eliminated.
Defining q = (θ, x), the full equations of motion can be written as

d

dt

∂L

∂q̇
− ∂L

∂q
+AT (q)λ−Υ = 0,

where λ ∈ Rm is the vector of Lagrange multipliers and the columns of
AT (q) correspond to the constraint directions. For a multifingered grasp
we can choose

A(q) =
[
−Jh(θ, x) GT (θ, x)

]

and the full equations of motion have the form

[
Mf 0
0 Mo

] [
θ̈
ẍ

]
+

[
Cf 0
0 Co

] [
θ̇
ẋ

]
+

[
Nf
No

]
+

[
−JTh
G

]
λ =

[
τ
0

]
. (6.24)

We see immediately from equation (6.24) that the Lagrange multipliers
λ ∈ Rm can be interpreted as contact forces. The net constraint forces
act as external forces applied at the tip of the fingers and at the contact
points on the object. If λ has a component in the null space of G, then
internal forces will be present.

To solve for the instantaneous forces during motion, we solve for the
Lagrange multipliers using the results of Section 1.2. Letting M̄ , C̄, and
N̄ represent the block matrices in equation (6.24), we have

λ = (AM̄−1AT)−1

(
AM̄−1

([
τ
0

]
− C̄q̇ − N̄

)
+ Ȧq̇

)
. (6.25)

We can compute the internal forces as a function of the current configura-
tion, velocity, and applied torques by projecting λ onto the null space of
G. The computation of λ and its projection is evidently extremely messy.
In practice, the internal forces generated by non-quasistatic motion are
either ignored or measured directly (via force sensors at the contacts).

An alternative way to find the constraint forces is to solve for them
in terms of the joint accelerations. If Jh is invertible, the contact forces
satisfy

λ = J−T
h

(
τ −Mf θ̈ − Cf θ̇ −Nf

)
.

From this equation it is clear that if the system is in motion, then internal
forces may exist even if J−T

h τ has no component in the null space of
G: the dynamic terms may generate internal forces. Notice also that
λ = fc := J−T

h τ only when the system is at rest.

280

Figure 6.3: Coordinated lifting.

All of the analysis presented here relies on the assumption that the
fundamental grasping constraint holds at all times. Even though we are
solving for the contact forces, it is important to remember that the con-
tact forces are generated by the constraints. If the contact forces fall
outside of the friction cone, then the velocity constraints on the system
no longer hold and the equations of motion are no longer given by equa-
tion (6.24). It is one of the tasks of control system to keep the contact
forces inside the friction cone so that the models we use here remain valid.

2.3 Other robot systems

Although the analysis so far has been motivated by grasping, the basic
formulation holds for any robot system subject to constraints of the form

J(q)θ̇ = GT (q)ẋ

with q = (θ, x). Any such system will automatically have dynamics with
the same form and structure as those of an open-chain manipulator. In
this section, we describe several such examples.

Coordinated lifting

Consider a robotic system which consists of several individual robots
lifting a single object, such as the example shown in Figure 6.3. Assume
that each robot firmly grasps the object and can exert arbitrary wrenches
without losing contact.

To derive the kinematics of this system we can treat each robot as a
single finger. The contact model for a robot firmly grasping an object
is given by Bci

= I ∈ Rp×p and FC = Rp. This is just the mathe-
matical statement that the robot can exert arbitrary forces and torques.
Substituting these relations into the grasp constraint and identifying the

281

Figure 6.4: The Motoman K10MSB robot performing an arc welding
task. (Photograph courtesy of Motoman)

contact and tool frames, we have





Ad−1
gs1t1

Jss1t1 0

. . .

0 Ad−1
gsktk

Jssktk





︸ ︷︷ ︸
J

θ̇ =





Ad−1
got1

...

Ad−1
gotk





︸ ︷︷ ︸
GT

V bpo.

The dynamics of the system follow exactly as in the grasping case.

Workspace dynamics

Many robot systems perform tasks which are most naturally described in
workspace coordinates rather than joint space coordinates. For example,
in the welding application depicted in Figure 6.4, a natural description of
the task would be in terms of the position and orientation of the welding
tip. Rather than solve an inverse kinematics problem to generate the
corresponding path in joint space, it is possible to directly specify the
dynamics in terms of the workspace coordinates (SE(3) for this example).

For simplicity, we work in local coordinates. Let g : Q→ Rp represent
the forward kinematics of the manipulator and J(θ) = ∂g

∂θ the Jacobian.
We assume that J is square and nonsingular. We take dynamics of the

282

object held by the robot (e.g., the arc welder) as

Mo(x)ẍ+ Co(x, ẋ)ẋ+No(x, ẋ) = 0,

where x ∈ Rp represents the workspace coordinates and the usual struc-
tural properties are satisfied by Mo and Co.

The kinematics of the mechanism is given by

J(θ)θ̇ = ẋ,

which has the form of our canonical constraint with G = I ∈ Rp×p. Thus,
we can write the dynamics as

M̃(q)ẍ+ C̃(q, q̇)ẋ+ Ñ(q, q̇) = F, (6.26)

where q = (θ, x) and

M̃ = Mo + J−TMfJ
−1

C̃ = Co + J−T
(
CfJ

−1 +Mf
d

dt

(
J−1

))

Ñ = No + J−TNf

F = J−T τ

(quantities with the subscript f refer to the robot dynamics). It follows

immediately that M̃ > 0 and ˙̃M − 2C̃ is skew-symmetric.
The dynamics given in equation (6.26) represent the equations of mo-

tion relative to the workspace coordinates x ∈ Rp. Thus, M̃(q) represents
the inertia of the system as viewed from the object frame of reference. As
in the grasping case, M̃(q) incorporates both the object inertia and the
inertia of the robot (at its current configuration). If the robot approaches
a singular configuration, the inertia matrix becomes unbounded. This is
because large workspace forces produce small object accelerations, and
hence the effective inertia appears very large. However, this singularity
is strictly due to the parameterization of the dynamics in terms of the
workspace coordinates. The dynamics of the mechanism in joint coordi-
nates are never singular.

There are several variations on this problem. The dynamics can be
written in terms of xo ∈ SE(3) by replacing x with xo, ẋ with V bo , and ẍ
with V̇ bo (see the comments at the end of Section 2.1). We can also write
the dynamics even if no object is present, by setting Mo, Co, and No to
zero. This is useful if we simply wish to command the trajectory of a
robot in end-effector coordinates. Finally, we can in certain cases relax
the assumption that J(θ) be square. This is discussed in more detail in
Section 3.

The primary difference between this class of examples and grasping
is the lack of any “internal forces” (since G = I never has a null space).

283

Hybrid position/force dynamics

Another common manipulation task is one which consists of moving the
robot in certain directions while pushing in other directions. An elemen-
tary example is writing on a chalkboard: the task specification consists
of a desired motion in the plane of the chalkboard and a desired force
against the chalkboard. A preliminary discussion of this topic is con-
tained in Chapter 4. We now use the tools developed in this chapter to
describe this situation more completely.

To analyze the kinematics of this system, we assume that the end-
effector is required to satisfy a holonomic constraint of the form

h(θ, x) = 0, (6.27)

where x ∈ Rp parameterizes the allowable motions of the manipulator.
For example, when writing on a chalkboard, x might specify the location
of the chalk on the board as well as its orientation (in some suitable set of
local coordinates). More generally, h(θ, x) specifies a p-dimensional sur-
face in the configuration space of the manipulator. The task description
consists of motion along this surface and generalized forces against this
surface.

Equation (6.27) can be converted into the standard problem by dif-
ferentiating with respect to time:

∂h

∂θ︸︷︷︸
J

θ̇ = −∂h
∂x︸ ︷︷ ︸
GT

ẋ (6.28)

As before, we assume that J is square and nonsingular, indicating that
no internal motions are present and that the manipulator is not at a
singular configuration relative to the task. Internal forces correspond to
joint torques τ such that GJ−T τ = 0. These are precisely the torques
which generate forces against the constraint surface.

To formulate the dynamics of the mechanism, we assume that the
object held by the robot is accounted for in the robot dynamics, and
hence

M̃(q)ẍ+ C̃(q, q̇)ẋ+ Ñ(q, q̇) = F,

where
M̃ = GJ−TMfJ

−1GT

C̃ = GJ−T
(
CfJ

−1GT +Mf
d

dt

(
J−1GT

))

Ñ = No +GJ−TNf

F = GJ−T τ.

The reason for combining the object dynamics with those of the robot
is that x ∈ Rp may not actually correspond to the configuration of an

284

object in many applications. For instance, in the chalkboard example,
only two of the linear velocities are specified by ẋ. If the chalkboard were
curved instead of flat, correctly specifying the object dynamics in terms
of x becomes much more involved.

As with grasping, internal forces do not affect the equations of motion
and hence they can be ignored if only the free motion is to be studied.
If internal forces are to be controlled or regulated, they can be found by
solving for the Lagrange multipliers.

Several variations of this problem are possible. The use of local co-
ordinates for motion which is constrained to a subgroup of SE(3) can be
relaxed by appropriate interpretation of velocities and accelerations. In
addition, the specifications of the task need not be in the form of a holo-
nomic constraint. For some problems, it may be more natural to specify
the kinematics directly in terms of J and G.

3 Redundant and Nonmanipulable Robot Sys-

tems

In order to perform a given task, a robot must have enough degrees of
freedom to accomplish that task. In the analysis presented so far, we
assumed that our robots had exactly the number of degrees of freedom
required to complete the task. That is to say, we assumed that each
finger could follow the object through any allowable trajectory, but that
the fingers had only the number of degrees of freedom required by the
contact type (i.e., one degree of freedom for a frictionless point contact,
three for a point contact with friction, and four for a soft-finger contact).
This assumption manifested itself in our requirement that Jh be an in-
vertible square matrix when we derived the dynamics. We now relax that
requirement and discuss its consequences.

There are two situations in which Jh can fail to be square and invert-
ible:

1. The manipulator has too many degrees of freedom. In this case,
Jh will have two or more columns which are linearly dependent,
allowing internal motions which leave the contact locations fixed.

2. The manipulator has too few degrees of freedom. If Jh is not full row
rank, it is not possible for the fingers to follow arbitrary motions of
the contact points. This potentially limits the motion of the object,
though it is possible for this situation to occur even if the grasp is
manipulable.

These cases are not distinct; it is possible for a manipulator to have both
internal motions and fail to be manipulable at the same time. In any case,
we seek to cast the problem into the general framework developed in the

285

previous section by augmenting or decreasing the number of variables
used to describe the task.

As before, we note that the material contained herein applies not only
to multifingered hands, but to many other constrained systems as well.
A few of these variations are described in the exercises.

3.1 Dynamics of redundant manipulators

Unlike conventional robot manipulators, constrained robot manipulators
do not need to have more than six degrees of freedom in order to be
redundant. The constraints themselves can introduce kinematic redun-
dancy into a system. For example, if we attach a six degree of freedom
finger to an object using a soft-finger contact, we have introduced two
redundant degrees of freedom: the finger is free to roll in either of two di-
rections without affecting the position of the object. Thus, it is absolutely
essential that we include redundant mechanisms in our formulation.

It is interesting to note that there are actually two sources of redun-
dancy introduced by our constraints: kinematic redundancy and actua-
tor redundancy. Kinematic redundancy refers to motions of the fingers
which do not affect the motion of the object. Actuator redundancy refers
to forces applied by the fingers which do not affect the object motion,
i.e., internal forces. The grasping constraint

Jh(θ, x)θ̇ = GT (θ, x)ẋ

contains all the information necessary to determine these redundancies.
Namely, the null space of Jh describes the set of joint motions which do
not affect the motion of the object and the null space of G is precisely the
space of internal forces. Since we have already discussed internal forces,
we restrict our discussion to kinematic redundancy.

Consider first the kinematics of a single redundant manipulator, with
no constraints. If we are willing to control the manipulator in joint space,
the dynamics formulation presented above holds without modification.
However, in order to perform a task specified in terms of the configu-
ration of the end-effector, we must first choose a joint trajectory which
accomplishes this task. Suppose instead that we wish to write our con-
trollers directly in end-effector coordinates. We represent the kinematics
as a function g : Rn → SE(3). In this case, the manipulator Jacobian
J(θ) := Jsst(θ) ∈ Rp×n is not square, so J−1 is not well defined and we
cannot write θ̇ in terms of V sst as we did previously.

It is still possible to write the dynamics of redundant manipulators in
a form consistent with that derived earlier. To do so, we define a matrix
K(θ) ∈ R(n−p)×n whose rows span the null space of J(θ). As before,
we assume that J(θ) is full row rank and hence K(θ) has constant rank
n − p. The rows of K(θ) are basis elements for the space of velocities

286

which cause no motion of the end-effector; we can thus define an internal
motion, vN ∈ Rn−p, using the equation

[
ẋ
vN

]
=

[
J
K

]
θ̇ =: J̄ θ̇.

By definition, J̄ is invertible and it follows from our previous derivation
that

M̃(q)

[
ẍ
v̇N

]
+ C̃(q, q̇)

[
ẋ
vN

]
+ Ñ(q, q̇) = J̄−T τ,

where M̃ and C̃ are obtained as in the nonredundant case, but replacing
J with J̄ and G with I:

M̃ = J̄−TMJ̄−1

C̃ = J̄−T
(
CJ̄−1 +M

d

dt

(
J̄−1

))

Ñ = No + J̄−TNf .

If we choose K such that its rows are orthonormal and also perpendicular
to the rows of J , then J̄−1 =

[
J+ KT

]
where J+ = JT (JJT)−1 is the

least-squares right (pseudo-) inverse of J .

Note that we have parameterized the internal motion of the system by
a velocity and not a new variable y. We do this out of necessity: since we
chose K only to span the null space of J , there may not exist a function
h such that y = h(θ) and ∂h

∂θ = K. A necessary and sufficient condition

for such an h to exist is that each row of K satisfy
∂Kij

∂θk
= ∂Kik

∂θj
. This

is merely the statement that mixed partials of h must commute. A more
thorough treatment of this point is given in Chapter 7, and is illustrated
briefly in the next example.

In general, it may not always be easy to choose K(θ) such that it is
the differential of some function. For this reason, we shall not generally
assume that an explicit coordinatization of the internal motion manifold
is available. Thus, in the same way as we were forced to use velocity re-
lationships when modeling constraints, we also use velocity relationships
for redundant manipulators. The Lagrange-d’Alembert formalism lets us
treat this case without difficulty.

Example 6.3. Three-link planar manipulator
Consider a three-link planar manipulator with unit-length links, as shown
in Figure 6.5. If we let (x, y) be the location of the end-effector, then

x = cos θ1 + cos θ2 + cos θ3

y = sin θ1 + sin θ2 + sin θ3,

287

θ3

B

θ1

(x, y)θ2

Figure 6.5: Three-link planar manipulator with joint angles measured
relative to the horizontal axis.

where the link angles are all with respect to a fixed (inertial) axis. The
Jacobian of the mapping θ 7→ (x, y) is

J(θ) =

[
− sin θ1 − sin θ2 − sin θ3
cos θ1 cos θ2 cos θ3

]
.

There are many choices of K(θ) to complete J(θ). If we choose

K(θ) =
[
0 0 1

]
,

then K = ∂h
∂θ with h(θ) = θ3. This corresponds to choosing the angle of

the end-effector to parametrize internal motions. This choice of K(θ) is
valid as long as θ1 6= θ2 (i.e., when the first two links are not aligned). If,
on the other hand, we choose

K(θ) =
[
sin(θ2 − θ3) − sin(θ1 − θ3) sin(θ1 − θ2)

]
,

which is valid as long as all three links are not aligned, then

∂K1(θ)

∂θ2
= cos(θ2 − θ3) 6= − cos(θ1 − θ3) =

∂K2(θ)

∂θ1
.

Hence, there is no h such that ∂h
∂θ = K and the velocity vN = K(θ)θ̇ is

not the derivative of a variable y.
We now derive the equations of motion for the system in terms of x,

y, and vN . Let M(θ) be the inertia matrix for the manipulator in joint
space with C(θ, θ̇), the corresponding Coriolis matrix. For brevity, we
ignore the potential and nonconservative forces. The dynamics of the
mechanism in end-effector coordinates are given by

(
J̄−TMJ̄−1

)



ẍ
ÿ
v̇N



+

(
J̄−TCJ̄−1 + J̄−TM

d

dt
(J̄−1)

)


ẋ
ẏ
vN



 = J̄−T τ

(6.29)

288

where

J̄ =

[
J(θ)
K(θ)

]
=




− sin θ1 − sin θ2 − sin θ3
cos θ1 cos θ2 cos θ3

sin(θ2 − θ3) sin(θ3 − θ2) sin(θ1 − θ2)



 .

We now return to the general case and extend our treatment to include
the full grasp constraints. Consider a force-closure and manipulable grasp
with velocity constraints

Jhθ̇ = GT ẋ,

where N (Jh) 6= 0. As before, we augment the constraint by choosing
a matrix Kh(θ) whose rows span the null space of Jh(θ). The grasp
constraint can now be written as

[
Jh
Kh

]

︸ ︷︷ ︸
J̄h

θ̇ =

[
GT 0
0 I

]

︸ ︷︷ ︸
ḠT

[
ẋ
vN

]
,

where J̄h and Ḡ represent the augmented hand Jacobian and grasp ma-
trix. This constraint has the same form as the standard (nonredundant)
grasp constraint and J̄h is now invertible by construction. Hence, we can
write the dynamics as

M̃(q)

[
ẍ
v̇N

]
+ C̃(q, q̇)

[
ẋ
vN

]
= ḠJ̄−T

h τ, (6.30)

where M̄ , C̄, and N̄ are

M̃ = ḠJ̄−T
h MJ̄−1

h ḠT

C̃ = ḠJ̄−T
h

(
CJ̄−1

h ḠT +M
d

dt

(
J̄−1
h ḠT

))
.

We now see that redundant manipulators can be incorporated into
the same general framework as other robot systems. The necessity of
augmenting the description of the system stems from our use of the task
variables, parameterized by x, to specify the motion of the system. Since
the mechanism is redundant, the x variables alone do not provide suffi-
cient information to determine the motion of the system. Augmenting
the task description with the variables vN gives a complete description
of the motion of the system.

One final comment is in order regarding the relationship between the
joint torques and the object wrench for a redundant grasp. In Chapter 5,
we derived the static relationships between the joint torques, the contact
forces, and the object wrench. These relationships were used to determine
how to push on an object, via the fingers, in order to resist applied forces.

289

In the redundant case, a bit of care must be taken in interpreting these
results.

Consider the general grasping situation described above. Reverting
to twists, the kinematic constraints have the form

[
Jh
Kh

]
θ̇ =

[
GT 0
0 I

] [
V bpo
vN

]
,

where V bpo ∈ Rp is the object’s body velocity and vN ∈ Rn−p is the
internal velocity. The associated quasistatic forces satisfy

τ =
[
JTh KT

h

] [fc
fN

]
F bpo = Gfc. (6.31)

The forces fN parameterize the forces which correspond to internal mo-
tions vN . If these forces are chosen to be zero, then we retrieve the usual
force relationships between joint torques and object wrenches.

If the forces fN are not chosen to be zero, then the manipulator will
begin to exhibit internal motions. This motion can cause accelerations
of the manipulator joints and we can no longer use equation (6.31) to
represent the force relationships in the system. Instead, we must consider
the full equations of motion as given in equation (6.30). In particular, the
internal motions of the system may generate constraint forces and hence
the relationships in equation (6.31) are no longer correct. This situation
does not occur in nonredundant systems since if we keep the end-effector
fixed, then all joint angles also remain fixed and hence no dynamic terms
are present.

3.2 Nonmanipulable grasps

We now consider the situation in which the hand Jacobian is not full row
rank. In this case, there are some motions of the individual contacts which
cannot be tracked by the fingers. We assume that the hand Jacobian is
full column rank. If not, the methods of the preceding subsection can be
used to augment the grasp with appropriate internal velocities.

In most situations, if the hand Jacobian is not full row rank, then the
grasp fails to be manipulable. However, in certain special situations, it is
possible that a multifingered grasp is both manipulable and nonredundant
but Jh is not square. This can occur when the structure of the grasp is
such that Jh is bijective onto the range of GT but is not surjective as a
map from Rn → Rm. This situation almost never occurs in practice, and
hence we concentrate here only on the case where Jh is nonmanipulable.

To treat the nonmanipulable case, we must restrict the motions of
the object to those which can be accommodated by the fingers. This
restriction is enforced by structural forces within the hand, which resist
motion of the system in directions in which the fingers are unable to move.

290

As usual, our formulation assumes that the contacts are maintained and
hence the contact forces must remain inside the friction cone at all times.
It is the responsibility of the control law to insure that this condition
holds at all times.

Consider a nonmanipulable grasp with grasp constraint

Jhθ̇ = GT ẋ.

Let W (θ, x) represent the space of allowable object velocities,

W (θ, x) = {ẋ ∈ Rp : ∃ θ̇ ∈ Rm with Jhθ̇ = GT ẋ}.

We assume that W (θ, x) has constant dimension l > 0 and that W varies
smoothly as a function of its arguments. Choosing a matrix H(θ, x) ∈
Rp×l whose columns span W (θ, x), we can write the grasp constraints as

Jhθ̇ = GTHw

ẋ = Hw,
(6.32)

where w ∈ Rl represents the object velocity in terms of the basis formed
by the columns of H.

To formulate the equations of motion, we write the dynamics in terms
of the velocities w ∈ Rl. By construction, Jh is surjective onto the range
of ḠT := GTH and hence we can solve for θ̇ given w. However, Jh is not
necessarily square so we must use the pseudo-inverse J+

h = (JTh Jh)
−1JTh

in place of J−1
h . The resulting dynamics are given by

M̃(q)ẇ + C̃(q, q̇)w + Ñ(q, q̇) = F, (6.33)

where q = (θ, x),

M̃ = Mo + ḠJ+T
h MfJ

+
h Ḡ

T

C̃ = Co + ḠJ+T
h

(
CfJ

+
h Ḡ

T +Mf
d

dt

(
J+
h Ḡ

T
))

Ñ = No + ḠJ+T
h Nf

F = GJ̄+T
h τ,

and J+T
h is the transpose of J+

h . The second-order dynamics in equa-
tion (6.33) combined with the first-order constraints in equation (6.32)
give a complete description of the motion of the system.

3.3 Example: Two-fingered SCARA grasp

To illustrate the results of this section, we consider the dynamics of two
SCARA fingers grasping a box, as shown in Figure 6.6. Each finger is

291

a

P

O

2r

b

S2

b

x

y

C1

C2

y

x
z

z

x

y y

x

z z

l1

l3

S1

l2

Figure 6.6: Two-fingered grasp using SCARA robots.

modeled as a soft-finger finger contact. The fundamental grasp constraint
for the system has the general form

8

xy

[
Jh1 0
0 Jh2

]
θ̇ =

[
GT1

GT2

]
V bpo.

←−−−−−−→ ←−−→
8 8

Although Jh(θ) ∈ R8×8 is a square matrix, it is not invertible. It was
shown in Section 5.3 of Chapter 5 that the grasp is not manipulable and
also contains internal motions. The lack of manipulability comes from the
fact that rotations about the line connecting the contacts violate the soft-
finger contact constraints. The internal motions correspond to motions
of the first three joints of each finger which leave the xy positions of the
fingertips fixed.

To parameterize the internal motion of the system, we augment the
system using the angles of the last joint of the fingers, as in Example 6.3.
Letting y = (θ11 + θ12 + θ13, θ21 + θ22 + θ23), the contact constraints
become

10

xy




Jh1 0
0 Jh2

1 1 1 0 0 0 0 0
0 0 0 0 1 1 1 0



 θ̇ =




GT1 0

GT2 0
0 I





[
V bpo

ẏ

]
.

←−−−−−−−−−−−−−→ ←−−−−−−−→
8 8

Note that for this example we were able to choose actual variables to
parameterize the internal motions and not just velocities.

292

The addition of the internal variables does not alter the nonmanip-
ulable nature of the grasp since Jh still does not span the range of GT .
Because rotations of the object about the line connecting the contacts
are the source of the difficulty, we eliminate these directions from the
allowable velocities of the system. Choosing

H =





1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1

0 0
0 0
0 0
0 0
0 0
0 0

0 0 0 0 0
0 0 0 0 0

1 0
0 1




=

[
H ′ 0
0 I

]

the resulting contact becomes

10

xy




Jh1 0
0 Jh2
K1 K2



 θ̇ =




GT1 H

′ 0

GT2 H
′ 0

0 I





[
w′

ẏ

]
,

←−−−−−−−−−→ ←−−−−−−−−−→
8 7

where V bpo = H ′w′ is in the set of allowable object velocities. A detailed
calculation verifies that this constraint is manipulable and that no in-
ternal motions exist. We can now solve for the dynamics of the system
in terms of the workspace variables w = (w′, y) ∈ R7, keeping in mind
that the pseudo-inverse of J̄h must be used since J̄h is surjective onto the
range of ḠT but not square.

4 Kinematics and Statics of Tendon Actua-

tion

In many robot applications, it is difficult to control the torques on the
joints directly, due to the size of the actuators required to exert reasonably
sized forces. A more practical approach is to use a transmission network
to carry forces from an actuator to the appropriate joint. Such a network
typically consists of some combination of linkages, tendons, gears, and
pulleys.

In this section, we consider one of the more common transmission
systems, a network of tendons. Tendons offer advantages in terms of
weight and flexibility; however, they can complicate the kinematics of the
mechanism. The basic problem which we study is to describe how forces
applied at the end of a tendon relate to the joint torques applied to the
mechanism. We also examine a second, somewhat less-common situation
in which elastic tendons are driven by position-controlled actuators, such
as a stepper motor.

293

joint 2joint 1
4

1

h4

h3

h2

h1

Figure 6.7: A tendon-driven finger.

4.1 Inelastic tendons

Consider a finger which is actuated by a set of inelastic tendons, such
as the one shown in Figure 6.7. Each tendon consists of an inextensible
cable connected to a force generator, such as a DC motor. For simplicity,
we assume that each tendon/actuator pair is connected either between
the base of the hand and a link of the finger, or between two links of the
finger. Interconnections between tendons are not allowed. We wish to
describe how forces applied at the end of the tendons are related to the
torques applied at the joints.

Note that even though each tendon can be connected to only one
link, pulling on a tendon may generate forces on many joints. This occurs
because as we pull on a tendon, it exerts forces all along its length against
whatever parts of the mechanism are holding it in place. This coupling
is difficult to eliminate without awkward routing of the tendons.

We model the routing of each tendon by an extension function, hi :
Q → R. The extension function measures the displacement of the end
of the tendon as a function of the joint angles of the finger. For simple
tendon networks composed of pulleys, such as those shown in Figure 6.7,
the tendon extension is a linear function of the joint angles

hi(θ) = li ± ri1θ1 ± · · · ± rinθn,

where li is the nominal extension (at θ = 0) and rij is the radius of the
pulley at the jth joint. The sign depends on whether the tendon path
gets longer or shorter when the angle is changed in a positive sense.

More complicated tendon geometries may involve nonlinear functions
of the joint angles. For example, for the joint pictured in Figure 6.8, the
top tendon has an extension function of the form

h1(θ) = l1 + 2
√
a2 + b2 cos

(
tan−1

(a
b

)
+
θ

2

)
− 2b θ > 0,

294

b

b

θ

R
a

a

h2

h1

Figure 6.8: Example of tendon routing with nonlinear extension function.

while the bottom tendon satisfies

h2(θ) = l2 +Rθ, θ > 0.

When θ < 0, these relations are reversed.
Once the tendon extension functions have been computed, we can de-

termine the relationships between the tendon forces and the joint torques
by applying conservation of energy. Let e = h(θ) ∈ Rp represent the
vector of tendon extensions for a system with p tendons and define the
matrix P (θ) ∈ Rn×p as

P (θ) =
∂h

∂θ

T

(θ).

Then,

ė =
∂h

∂θ
(θ)θ̇ = PT (θ)θ̇.

Since the work done by the tendons must equal that done by the fingers
(in the absence of friction or other losses), we can use conservation of
energy to conclude

τ = P (θ)f,

where f ∈ Rp is the vector of forces applied to the ends of the tendons.
The matrix P (θ) is called the coupling matrix and plays a role similar to
that of the grasp map defined in Chapter 5.

The kinematics of the tendon network can be combined with the dy-
namics of the mechanism to yield

M(θ)θ̈ + C(θ, θ̇)θ̇ +N(θ, θ̇) = P (θ)f.

The structure of this equation relies on the assumption that the actuator
and tendon dynamics can be ignored, and hence a force applied at the
end of the tendon is immediately transmitted to the joints through the
coupling matrix.

295

θ2

θ1
h2

h3

h1

h4

Figure 6.9: Planar tendon-driven finger.

Example 6.4. Two-link tendon-driven finger
As an example, we consider the planar finger shown in Figure 6.9. It
consists of two revolute joints driven by four tendons. The tendons are
routed through sheaths attached to the sides of the links.

The extension functions for the tendon network are calculated by
adding the contribution from each joint. The two tendons attached to
the first joint are routed across a pulley of radius R1, and hence

h2 = l2 −R1θ1

h3 = l3 +R1θ1.

The tendons for the outer link have more complicated kinematics due to
the routing through the tendon sheaths. Their extension functions are

h1 = l1 + 2
√
a2 + b2 cos

(
tan−1

(a
b

)
+
θ1
2

)
− 2b−R2θ2

h4 = l4 +R1θ1 +R2θ2

θ1 > 0.

When θ1 < 0, these relations are reversed.
The coupling matrix for the finger is computed directly from the ex-

tension functions. When θ1 > 0,

P (θ) =
∂h

∂θ

T

=

[
−
√
a2 + b2 sin(tan−1

(
a
b

)
+ θ1

2) −R1 R1 R1

−R2 0 0 R2

]
.

Note that pulling on the tendons routed to the outer joints (tendons 1
and 4) generates torques on the first joint as well as the second joint.

4.2 Elastic tendons

The preceding kinematic analysis can also be extended to elastic tendons.
We assume that the tendons are completely free to slide along the fingers,

296

joint 2joint 1

1

4

h1

h2

h3

h4e4

e2

e1

e3

Figure 6.10: Planar finger with position-controlled elastic tendons.

and hence we can lump all elasticity into a single spring element at the
base of the tendon, as shown in Figure 6.10. We further assume that the
tendon is massless and hence has no dynamics. In practice, this is a good
approximation since tendon networks are usually much faster than the
dynamics of the underlying robot.

Since tendons are one-dimensional devices, the force relationships de-
rived for inelastic tendons also hold in the case when the tendons are
elastic. To see why this is so, consider the instantaneous effect of apply-
ing a force to the end of a tendon. Assuming the tendon has negligible
mass, the tendon will immediately stretch until the force due to the dis-
placement of the tendon balances the applied force. However, in this
case, the tendon will be applying exactly the same amount of force to the
mechanism, and hence our previous analysis holds.

When elastic tendons are used, it is also possible to control the position
of the end of the tendon and use the elasticity of the tendon to convert
this into a force. Let ei be the extension of the tendon as commanded
by the actuator and let hi(θ) be the extension of the tendon due to the
mechanism. We assume that when θ = 0 and ei = 0 the tendon is under
zero tension. The net force applied to the tendons is given by

fi = ki(ei + hi(0)− hi(θ)),
where ki is the stiffness of the tendon.

Letting K be the diagonal matrix of tendon stiffnesses, we have, for
a completely elastic network of tendons with extension e,

f = K(e+ h(0)− h(θ))
and the dynamics become

M(θ) + C(θ, θ̇)θ̇ +N(θ, θ̇) + PK(h(θ)− h(0)) = PKe

The function S(θ) := PK(h(θ)−h(0)) models the stiffness of the tendon
network while Q := PK becomes the new coupling matrix between the

297

tendon extension and the equivalent joint torques. If the input positions
are constant, then S(θ) gives the restoring force generated as a result of
bending the finger away from the equilibrium configuration.

Force- and position-controlled tendons can also be combined, as illus-
trated in the exercises.

Example 6.5. Coupling matrix for a finger with elastic tendons
Consider the example shown in Figure 6.10. The extension functions are
given by

h1 = l1 + r11θ1 − r12θ2
h2 = l2 − r21θ1
h3 = l3 + r31θ1

h4 = l4 − r41θ1 + r42θ2,

where rij is the radius of the pulley for the ith tendon on the jth joint.
The coupling matrix is

P (θ) =
∂h

∂θ

T

=

[
r11 −r21 r31 −r41
−r12 0 0 r42

]
.

Since all of the extension functions are linear, the coupling matrix is
constant.

To compute the relationship between the actuator position and the
joint torques, we use the stiffness matrix

K =





k1 0 0 0
0 k2 0 0
0 0 k3 0
0 0 0 k4



 ,

where ki > 0 is the stiffness of the ith tendon. The overall stiffness is
given by

S(θ) = PK(h(θ)− h(0))

=

[
k1r

2
11 + k2r

2
21 + k3r

2
31 + k4r

2
41 −k1r11r12 − k4r41r42

−k1r11r12 − k4r41r42 k1r
2
12 + k4r

2
42

]
θ,

and the coupling matrix between the actuator extension and the joint
torques is

Q = PK =

[
k1r11 −k2r21 k3r31 −k4r41
−k1r12 0 0 k4r42

]
.

4.3 Analysis and control of tendon-driven fingers

One peculiarity of using tendon networks is that all tendon tensions must
be strictly positive. Hence, the set of all torques which can be applied

298

is given by the positive span of the columns of P (θ). This is analogous
to grasping using frictionless point contacts, and the same tools can be
applied to analyze the kinematic properties of the tendon network.

A control law for a tendon-driven robot computes the joint torques
τ ∈ Rn which must be generated by applying forces to the tendons. We
say that a tendon network is force-closure if for any τ ∈ Rn there exists
a set of forces f ∈ Rp such that

P (θ)f = τ and fi > 0, i = 1, . . . , p. (6.34)

As in the grasping case, a necessary and sufficient condition for a tendon
network to be force-closure is that P (θ) be surjective and there exist a
strictly positive vector of internal forces fN ∈ Rp, fN,i > 0 such that
P (θ)fN = 0.

Limits on the number of tendons necessary to construct a force-closure
tendon network are given by Caratheodory’s and Steinitz’s theorems,
which were given in Chapter 5, Section 4. Caratheodory’s theorem asserts
that for a robot with n links, at least n + 1 tendons are required to
actuate it, while Steinitz’s theorem proves that any more than 2n tendons
are redundant. In fact, these two bounds correspond to the two most
common types of tendon networks, referred to as “N + 1” and “2N”
tendon configurations. TheN+1 configuration usually consists of a single
tendon which pulls on all of the joints in one direction, together with n
additional tendons which generate torques in the opposite direction. The
2N configuration is the one used in all of the examples here, where we
attach two tendons to each joint, acting in opposite directions.

For tendon networks which are actuated by force-controlled devices,
the tendon forces chosen to exert a given vector of joint torques have the
form

f = P+(θ)τ + fN ,

where P+ = PT (PPT)−1 ∈ Rm×n is the pseudo-inverse of the coupling
matrix and fN ∈ N (P) ∩ R

p
+ is an internal force that insures that all

tendon tensions are positive. In most situations, fN will be chosen as
small as possible, so that the tendons remain taut but are not subjected
to excessive internal forces.

The case of elastic tendons with position-controlled actuators is han-
dled exactly the same way, except that we must solve

P (θ)Ke = τ and ei + hi(0)− hi(θ) > 0, i = 1, . . . , p. (6.35)

Since K ∈ Rp×p is an invertible stiffness matrix, if the tendon network is
force-closure, then there exists a vector of extensions eN ∈ Rp such that
eN,i > 0 and PKeN = 0. By choosing

e = (PK)+τ + eN

299

with eN sufficiently large in magnitude, we can insure that the constraints
in equation (6.35) are satisfied.

The tools presented here can be extended to the case of mixed net-
works of rigid and elastic tendons and also to tendons which extend be-
tween two links in the robot. These cases are explored in the exercises.

5 Control of Robot Hands

In this section, we concentrate on the control aspects of multifingered
robot hands and show how to extend previous controllers (presented in
Chapter 4) to apply to grasping and other coordinated manipulation
tasks. In addition, we include some thoughts on organization of complex
controllers motivated in part by the type of control mechanisms found in
biological motor control systems.

5.1 Extending controllers

For a constrained manipulation problem, we can break the control prob-
lem into two main parts:

1. Tracking a given object (or workspace) trajectory

2. Maintaining a desired internal force

Under the assumption that all objects and links are rigid and their geome-
tries completely known, these two problems can be partially decoupled.
We first find joint torques which satisfy the tracking requirement and
then add sufficient internal forces to keep the contact forces inside the
appropriate friction cones or satisfy some other force objective.

More specifically, suppose that we have a constrained robotic system
with dynamics of the form

M(q)ẍ+ C(q, q̇)ẋ+N(q, q̇) = F = GJ−T τ,

with q = (θ, x) ∈ Rn × Rp. As we saw in the first part of this chapter,
a large class of systems can be modeled by equations of this form with
GJ−T : Rn → Rp a surjective map. In this framework, x ∈ Rp represents
the position variable and the null space of G corresponds to the internal
force directions (assuming J is invertible). In addition to the general
form of the dynamics, we also assume that M(q) > 0 for all q and that
Ṁ − 2C is a skew-symmetric matrix. These properties hold for all of the
systems given in this chapter with the proper definition of J and G.

The tracking problem is to find joint torques which cause the system
to asymptotically track a given workspace trajectory xd(·). To solve
this problem, we begin by treating F as a direct input to the system.
Since GJ−T is surjective, it is always possible to find a set of torques τ

300

which realizes this virtual input. Furthermore, since M and C satisfy the
properties of Lemma 6.1, we can use any of the controllers derived for
open-chain manipulators to asymptotically track a trajectory xd(t).

As an example, the computed torque controller for a constrained robot
system becomes

F = M(q) (ẍd −Kv ė−Kpe) + C(q, q̇)ẋ+N(q, q̇),

where e := x− xd. Note that in this controller M(q) depends on both θ
and x. In the special case that the system constraints are holonomic, the
dependence on θ can be removed, but this usually involves inverting a
nonlinear map. However, since the only essential properties required by
the proofs of convergence are that M(q) be positive definite and Ṁ − 2C
skew-symmetric, all of the previous proofs apply directly.

Once F has been determined, the joint torques τ are chosen so that
GJ−T τ = F . It is always possible to find some such τ , since by assump-
tion GJ−T is surjective. However, GJ−T is not necessarily injective and
hence there may be many values of τ which generate F . In fact, since J is
taken to be invertible, the extra freedom in τ corresponds to the existence
of internal forces in the system. The general solution to GJ−T τ = F has
the form

τ = JTG+F + JT fN , (6.36)

where G+ = GT (GGT)−1 is the pseudo-inverse of G and fN ∈ N (G).
Since GfN = 0, fN can be chosen arbitrarily without affecting the tra-
jectory tracking characteristics of the controller.

The extra freedom in τ is used to satisfy the second part of the control
problem, regulating internal forces. For a grasping problem, fN must be
chosen such that the net contact force lies in the friction cone FC. This is
an extremely important condition, since our entire problem formulation
assumed that the fingers remained in contact with the object (in the
directions specified by the contact model). For other types of problems,
such as coordinated lifting, the regulation of the internal forces is not
quite so critical, since the mechanical structure will act to enforce the
constraints at all times. In this case we often choose fN = 0 to minimize
application of internal forces.

In situations in which regulation of internal forces is desired, a fur-
ther complication arises from the fact that the net contact force is not
given simply by G+F + fN . Rather, this is the contact force due to the
actuators. Additional contact forces may be generated by the dynam-
ics of the system, as discussed in Section 2.2. To truly insure that the
contact forces remain inside the friction cone, the full dynamics must be
taken into account. This can be done either by computing the forces of
constraint or measuring them.

Fortunately, for many problems a detailed analysis of the internal
forces is not necessary. If the forces of constraint due to non-quasistatic

301

motion are small compared to the desired internal force, they can often
be ignored. We make that assumption here and assume that we are given
a desired internal force fN,d(·) which we wish to regulate and that the
dynamic forces of constraint can be ignored. In this case the final control
law has the form

τ = JTh G
+F + JTh fN,d

where F is the virtual force generated to satisfy the trajectory tracking
requirement.

A second possibility for controlling internal forces is to measure the
applied internal forces and adjust fN using a second feedback control
law. This must be done carefully since, for a rigid robot system, forces
are transmitted instantaneously and have no associated dynamics. This
can lead to problems in which the control problem is ill-posed due to the
existence of algebraic loops. For example, consider a “robot” which only
applies forces. Let f be the applied force and fd the desired force. A
proportional controller regulating the force is given by

f = α(f − fd).

For α 6= 0, this controller only satisfies f = fd if f = fd = 0. For any
other fd, we have an algebraic loop which is never satisfied.

One common way to overcome this problem is to use an integrator.
Again we let fd be the desired force and set

f = fd + α

∫
(f − fd) dt.

This controller consists of a feedforward piece, fd, and an integrating
compensator. Setting f = fd generates no contradictions, and hence this
controller is well-posed. It is important to note that adding an integrator
must be done carefully to avoid introducing unstable behavior into the
system due to measurement noise and “integrator-windup.” Details of
these problems can be found in standard undergraduate texts on control
engineering, such as [3] and [34].

5.2 Hierarchical control structures

A multifingered robot hand can be modeled as a set of robots which are
coupled to each other and an object by a set of velocity constraints. The
analysis presented in the beginning of this chapter allows us to model this
interconnection and create a new dynamical system which incorporates
the constraints. In fact, this procedure is sufficiently straightforward that
it may be automated: by specifying the contact constraint between the
robots and the object, the new equations of motion for the composite
robot can be derived using a symbolic manipulation program.

302

A significantly more difficult problem is that of constructing con-
trollers for robot systems. Although conceptually simple, a controller
for a multifingered robot hand must be able to control a very complex
system with many degrees of freedom, large amounts of sensory data, and
multiple control objectives. A typical hand might have 10–20 actuators,
10–15 constraints, and a state-space of dimension 30 or higher. A control
law for such a system might need to run at a control frequency of 500 Hz
or more in order to yield acceptable performance. Computing the control
torques for such a system in under 2 milliseconds is often impossible if
the system is modeled as a single, complex dynamical system.

The difficulties in controlling systems with many degrees of freedom
have also been noted in the biomechanics literature. The study of hu-
man biological motor control mechanisms led the Russian psychologist
Bernstein to question how the brain could control a system with so many
different degrees of freedom interacting in such a complex fashion [41].
Many of these same complexities are also present in robotic systems and
limit our ability to use multifingered hands and other robotic systems to
their full advantage.

In the remainder of this section, we describe one possible way of struc-
turing controllers which attempts to address some of the difficulties in-
herent in the control of constrained robot systems with many degrees of
freedom. We present a set of primitive operations that allow a complex
robot controller to be built up in a hierarchical fashion and discuss some
of the issues involved in the resulting control structure. The material
contained in this section was originally presented in [75], where a more
detailed description is given.

Defining robots

We wish to build up complex control laws by utilizing the geometric
constraints between the mechanisms which make up the overall system.
We will model all mechanisms as a generalized object which we label as a
robot. A robot consists of a dynamical system whose equations of motion
have the form

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = F.

The quantities M , C, and N completely parameterize the dynamics of
the mechanism.

In addition to the parameters (M,C,N), a robot also has a set of
inputs and outputs. The inputs consist of the desired position of the
robot, xd, and the forces to be applied to the robot, Fd. The outputs are
the actual position of the mechanism, x, and the measured force F . Some
types of robots may not use or define all of these inputs and outputs.

The relationship between the various parameters describing a robot
depends on the robot itself. For example, we model an actuated, open-

303

chain mechanism using the relationships

F = Fd

M(q)q̈ + C(q, q̇)q̇ +N(q, q̇) = F.

Thus, given a desired force to be applied to the robot, the robot will move
according to the equations of motion. The desired trajectory input for
an uncontrolled robot is ignored. (We will make use of this input later
when we attach controllers to robots.)

In addition to modeling actuated mechanisms, a robot can also de-
scribe an inanimate object. In this case, all inputs to the robot are
ignored and the outputs from the robot provide information about the
current position of the object and the forces acting on it, if available. The
inertial parameters (M,C,N) are used as before to model the dynamics
of the object.

The utility of defining a generalized object called a robot is that we
may define operations which take one or more generalized robots and
yield a new generalized robot. We define two such operations below. In
order to define the new object, we must define the inertial properties
as well as a description of the inputs and outputs. These are typically
defined recursively, so that a composite robot queries and commands its
children in response to requests for inputs and outputs.

Attaching robots

The first operation which we define is the attach operation, which reflects
geometrical constraints between two or more robots. It creates a new
robot object from the attributes of its children. Its definition (and name)
is motivated by the attachment of a set of fingers to an object, but its
use is much more general.

The arguments to the attach operation are a list of robots, which we
refer to as fingers, together with a single object which we refer to as the
payload. In addition, we are given a constraint between the configuration
variables of the fingers and those of the object. For simplicity, we take
this constraint to be of the form h(θ, x) = 0 where θ = (θf1 , . . . , θfk

) ∈ Rn

is the vector of finger joint angles and x ∈ Rp is the configuration of the
payload.

To construct a new robot, we use the Lagrange-d’Alembert equa-
tions to write the dynamics in terms of the payload variables x ∈ Rp.
Let (Mf , Cf , Nf) be the (block-diagonal) parameters for the fingers and
(Mp, Cp, Np) be those of the payload. The dynamic parameters for the

304

constrained robot are given by

M̃ := Mp +GJ−TMfJ
−1G

C̃ := Cp +GJ−TCfJ
−1G+GJ−TMf

d

dt

(
J−1G

)

Ñ := Np +GJ−TNf ,

where J = ∂h
∂θ , GT = −∂h∂x , and we assume that J is invertible for the

purposes of exposition. Note that in order to evaluate M̃ at the current
configuration, we can query the payload and each of the fingers for their
current inertia matrices and then combine these using the constraints.

To read the configuration of the composite robot, we query the state
of all the robots in the list of daughter robots and then solve the (holo-
nomic) constraint h(θ, x) = 0 to find the current payload configuration.
Alternatively, if the payload is equipped with sensors (perhaps an exter-
nal camera which tracks the payload), this data can be used instead. A
similar computation or measurement can be used to determine the net
force on the object, which will consist of contact forces applied by the
fingers and external forces applied by the environment.

Commanding the desired position and force on the robot also uses
the constraint equations to distribute information to the fingers and the
payload. If all fingers are uncontrolled, actuated mechanisms, then the
desired forces will be applied to the actuators and the desired position
will be ignored.

A diagram illustrating the data flow in a robot constructed by the
attach operation is shown in Figure 6.11. In addition to modeling grasp
constraints, the attach operation can be used to model other situations,
as described in Section 2.3. For example, we can change from joint space
to workspace coordinates or add variables parameterizing the internal
motion of a redundant robot.

Controlling robots

The control operation is responsible for assigning a controller to a robot.
It is also responsible for creating a new robot with attributes that properly
represent the controlled robot. The attributes of the created robot are
completely determined by the individual controller. For most controllers,
the current state of the controlled robot is equivalent to the current state
of the uncontrolled robot. Sending a desired trajectory to a controlled
robot would cause the controller to buffer the data and attempt to follow
that trajectory. A controlled robot is illustrated in Figure 6.12.

The dynamic attributes M̃ , C̃, and Ñ for the newly created robot
are determined by the controller. At one extreme, a controller which
compensates for the inertia of the robot would set the dynamic attributes
of the controlled robot to zero. This does not imply that the robot is

305

h(θd, xd) = 0

τd = JTG+Fd

θ

τd

θd

τd

θd θ

Finger

Payload

2

M1, C1, N1

M2, C2, N2

Mp, Cp, Np

Finger
1

τ

τ

M̃, C̃, Ñ

h(θ, x) = 0

F = GJ−T τ

xxd

FFd

Figure 6.11: Data flow between two robots which have been attached to
a payload.

control

M,C,N

object

xc

Fc

x

FFd

xd

law
robot

M̃, C̃, Ñ

Figure 6.12: Data flow in a typical controlled robot.

no longer a dynamic object, but rather that controllers at higher levels
can ignore the dynamic properties of the robot, since they are being
compensated for at a lower level. At the other end of the spectrum, a
controller may make no attempt to compensate for the inertia of a robot,
in which case it should pass the dynamic attributes on to the next higher
level. Controllers which lie in the middle of this range may partially
decouple the dynamics of the manipulator without actually completely
compensating for them.

Building hierarchical controllers

The operation described above allow us to build complex hierarchical con-
trol laws for robot systems. Since a controller accepts a robot object and

306

Brain
response time
100-200 ms

Spinal cord
response time
30 ms

Thumb
muscles &

joints

Forefinger
muscles &

joints

Sensory &

Cerebellum,

Pincer grip

system

composite

motor cortex

brainstem, &
thalamus

Sensory Cortex

Cerebellum

Thalamus

Motor Cortex

Brainstem

Cortical Loop

Spinal

Spinal Loop

reflexes
Spinal
reflexes

Figure 6.13: Hierarchical control scheme for a human finger. (Figure
courtesy of D. Curtis Deno)

creates a robot object, it can be inserted at any level in the description of
a constrained robot system. Thus, we can easily define hierarchical con-
trollers whose structure mirrors the geometric structure of the system.
We illustrate this in the following examples.

Example 6.6. Biological motor control
Figure 6.13 shows a hierarchical control scheme for a human finger. At
the highest level, the brain is represented as sensory and motor cortex
(where sensory information is perceived and conscious motor commands
originate) and brainstem and cerebellar structures (where motor com-
mands are coordinated and sent down the spinal cord). A pair of fingers
forms a composite system for grasping which is shown integrated at the

307

xl xr
xb

θl,2 θr,2

θr,1θl,1

Figure 6.14: Planar two-fingered hand and a hierarchical control law.

level of the spinal cord. The muscles and sensory organs of each finger
form low-level spinal reflex loops. These low-level loops respond more
quickly to disturbances than sensory motor pathways which travel to the
brain and back. Brain and spinal feedback controllers are represented by
double-lined boxes.

The block diagram portion of Figure 6.13 is a (biological) example of
a robot system built using the operations described above. Starting from
the bottom: two fingers (robots) are defined; each finger is controlled by
muscle tension/stiffness and spinal reflexes; the fingers are attached to
form a composite hand; the brainstem and cerebellum help control and
coordinate motor commands and sensory information; and finally, at the
level of the cortex, the fingers are thought of as a pincer which engages
in high-level tasks such as picking.

Example 6.7. Hierarchical control of a two-fingered planar hand
As a second, more practical example, consider the planar hand shown in
Figure 6.14. The parameters describing the dynamics of the fingers and
the object, as well as the constraints between them, are easily computed
and are given in earlier examples. We can build a hierarchical controller
which is similar to the biological controller described in the previous
example. This control structure is shown graphically in Figure 6.15.

At the lowest level, we use simple PD control laws attached directly to
the individual fingers. These PD controllers mimic the stiffness provided
by muscle coactivation in a biological system. Additionally, controllers at
this level might be used to represent spinal reflex actions. At a somewhat
higher level, the fingers are attached and considered as a single unit with
relatively complicated dynamic attributes and Cartesian configuration.

308

Grasping

Left Right

box trajectory

Computed

forward
Feed-

Finger

PD PD

Box

torque

constraint

kinematics

finger finger

Figure 6.15: A hierarchical controller for multifingered grasping.

At this point, we employ a feedforward controller (computed torque with
no error correction) to simplify these dynamic properties, as viewed by
higher levels of the brain. With respect to these higher levels, the two
fingers appear to be two Cartesian force generators, represented as a
single composite robot.

Up to this point, the representation and control strategies do not
explicitly involve the box, a payload object. The force generators are
next attached to the box, yielding a robot with the dynamic properties
of the box, but capable of motion due to the actuation in the fingers.
Finally, we use a computed torque controller at the very highest level
to allow us to command motions of the box without worrying about the
details of muscle actuation. By this controller, we simulate the actions
of the cerebellum and brainstem to coordinate motion and correct for
errors.

It is helpful to illustrate the flow of information to the highest level
control law. In the evaluation of the current box configuration and tra-

309

jectory, xb and ẋb, the following sequence of actions occurs:

Hand: asks for current state, xb and ẋb
Finger: ask for current state, xf and ẋf

Left: read current state, θl and θ̇l
Right: read current state, θr and θ̇r

Finger: xf , ẋf ← f(θl, θr), J(θ̇l, θ̇r)
Hand: xb, ẋb ← g(xf), G

+T ẋf .

When we write a set of hand forces, a similar chain of events occurs.
The structure in Figure 6.15 also has interesting properties from a

more traditional control viewpoint. The low-level PD controllers can be
run at high servo rates (due to their simplicity) and allow us to tune
the response of the system to reject high-frequency disturbances. The
Cartesian feedforward controller permits a distribution of the calculation
of nonlinear compensation terms at various levels, lending itself to multi-
processor implementation. Finally, using a computed torque controller at
the highest level gives the flexibility of performing the controller design
in the task space and results in a system with linear error dynamics.

310

6 Summary

The following are the key concepts covered in this chapter:

1. The dynamics of a mechanical system with Lagrangian L(q, q̇), sub-
ject to a set of Pfaffian constraints of the form

A(q)q̇ = 0 A(q) ∈ Rk×n,

can be written as

d

dt

∂L

∂q̇
− ∂L

∂q
+AT (q)λ−Υ = 0,

where λ ∈ Rk is the vector of Lagrange multipliers. The values of
the Lagrange multipliers are given by

λ = (AM−1AT)−1
(
AM−1(F − Cq̇ −N) + Ȧq̇

)
.

2. The Lagrange-d’Alembert formulation of the dynamics represents
the motion of the system by projecting the equations of motion
onto the subspace of allowable motions. If q = (q1, q2) ∈ R(n−k)×k

and the constraints have the form

q̇2 = A(q)q̇1,

then the equations of motion can be written as
(
d

dt

∂L

∂q̇1
− ∂L

∂q1
−Υ1

)
+AT

(
d

dt

∂L

∂q̇1
− ∂L

∂q2
−Υ2

)
= 0.

In the special case that the constraint is integrable, these equations
agree with those obtained by substituting the constraint into the
Lagrangian and then using the unconstrained version of Lagrange’s
equations.

3. The dynamics for a multifingered robot hand with joint variables
θ ∈ Rn and (local) object variables x ∈ Rp, subject to the grasp
constraint

Jh(θ, x)θ̇ = GT (θ, x)ẋ,

is given by
M̃(q)ẍ+ C̃(q, q̇)ẋ+ Ñ(q, q̇) = F,

where q = (θ, x) and

M̃ = Mo +GJ−T
h MfJ

−1
h GT

C̃ = Co +GJ−T
h

(
CfJ

−1
h GT +Mf

d

dt

(
J−1
h GT

))

Ñ = No +GJ−T
h Nf

F = GJ−T
h τ.

311

These same equations can be applied to a large number of other
robotic systems by choosing G and Jh appropriately.

4. For redundant and/or nonmanipulable robot systems, the hand Ja-
cobian is not invertible, resulting in a more complicated derivation
of the equations of motion. For redundant systems, the constraints
can be extended to the form

[
Jh
Kh

]

︸ ︷︷ ︸
J̄h

θ̇ =

[
GT 0
0 I

]

︸ ︷︷ ︸
ḠT

[
ẋ
vN

]
,

where the rows of Kh span the null space of Jh, and vN represents
the internal motions of the system. For nonmanipulable systems,
we choose a matrix H which spans the space of allowable object
trajectories and write the constraints as

Jhθ̇ = GTH︸ ︷︷ ︸
ḠT

w,

where ẋ = H(q)w represents the object velocity. In both the re-
dundant and nonmanipulable cases, the augmented form of the con-
straints can be used to derive the equations of motion and put them
into the standard form given above.

5. The kinematics of tendon-driven systems are described in terms
of a set of extension functions, hi : Q → R, which measures the
displacement of the tendon as a function of the joint angles of the
system. If a vector of tendon forces f ∈ Rk is applied at the end of
the tendons, the resulting joint torques are given by

τ = P (θ)f,

where P (θ) ∈ Rn×p is the coupling matrix:

P (θ) =
∂h

∂θ

T

(θ).

A tendon-system is said to be force-closure at a point θ if for every
vector of joint torques, τ , there exists a set of tendon forces which
will generate those torques.

6. The equations of motion for a constrained robot system are de-
scribed in terms of the quantities M̃(q), C̃(q, q̇), and Ñ(q, q̇). When
correctly defined, the quantities satisfy the following properties:

(a) M̃(q) is symmetric and positive definite.

(b) ˙̃M(q)− 2C̃ is a skew-symmetric matrix.

312

Using these properties it is possible to extend the controllers pre-
sented in Chapter 4 to the more general class of systems considered
in this chapter. For a multifingered hand, an extended control law
has the general form

τ = JTG+F + JT fN ,

where F is the generalized force in object coordinates (determined
by the control law) and fN is an internal force. The internal forces
must be chosen so as to insure that all contact forces remain inside
the appropriate friction cone so that the fingers satisfy the funda-
mental grasp constraint at all times.

7 Bibliography

The derivation of the equations of motion in the presence of nonholonomic
constraints is classical, although many recent textbooks only present the
case in which all constraints are holonomic. The derivation presented
here is based in part on the much more detailed and instructional analysis
presented by Rosenberg [99]. The splitting of the dynamics for nonholo-
nomic systems into a first-order piece and second-order piece is based on
the presentation by Bloch et al. [8].

Derivations of the dynamics of multifingered hands and extensions of
standard robot control laws can be found in [62] and [75, 77]. The deriva-
tion presented here follows [77]. We also mention the work of Khatib on
operational space methods [50], which is closely related and provided ini-
tial inspiration for our approach. The material on tendon kinematics is
based on the formulation of Deno et al. [26], which also considers the more
general case of actuator networks with compliance and internal loops.

313

8 Exercises

1. Calculate the dynamics of a spherical pendulum using the Lagrange-
d’Alembert equations and check that they agree with the result
derived in Example 6.1.

2. For the rolling disk in Example 6.2, show that substituting the
constraints on ẋ and ẏ into the Lagrangian and then applying La-
grange’s equations (without constraints) gives the wrong equations
of motion.

3. Calculate the constraint forces for the rolling penny described in
Example 6.2.

4. Structural properties of the Newton-Euler equations
Consider the Newton-Euler equations for the motion of a rigid body:

[
mI 0
0 I

] [
v̇b

ω̇b

]
+

[
ωb ×mvb
ωb × Iωb

]
= F b.

Let xo = (p,R) ∈ SE(3) denote the configuration of the rigid body
and V b = (vb, ωb) = (x−1

o ẋo)
∨ ∈ R6 the body velocity.

(a) Show that the Newton-Euler equations can be written as

M(xo)V̇
b + C(xo, ẋo)V

b = F b,

where M(xo) > 0 and Ṁ − 2C is a skew-symmetric matrix.

(b) Let xo = φ(x), x ∈ R6 be a local parameterization of xo (using
Euler angles to represent rotation, for example). Assuming
that the matrix

J(x) =
[(
φ−1 ∂φ

∂x1

)∨
· · ·

(
φ−1 ∂φ

∂x6

)∨]
∈ R6×6

is nonsingular, show that the equations of motion become

M̄(x)ẍ+ +C̄(x, ẋ)ẋ = JT (x)F b,

where
M̄ = JTMJ

C̄ = JTCJ + JTMJ̇.

5. Derive the dynamics of the four-bar linkage shown below in terms
of the crank angle θ1 ∈ S1.

314

l3

θ1

θ2
l1

l2 TB

θ3

6. Derive the actuator kinematics for the tendon networks shown be-
low. Consider both the rigid and elastic cases.

joint 1 joint 2 joint 1

joint 2

(a) (b)

7. Consider the two-link planar manipulator shown below.

c

(a) Calculate the kinematic constraints on the system.

(b) Calculate the dynamics of the manipulator assuming that the
end-effector remains in contact with the wall at x = c. Model
the inertia of each link as a point mass concentrated at the
middle of the link.

(c) Calculate the internal forces due to the manipulator dynamics.

(d) Design a PD controller which gives asymptotic tracking of tra-
jectories in the y direction while pushing with constant force
fd > 0 in the x direction.

315

316

Chapter 7

Nonholonomic Behavior

in Robotic Systems

In this chapter, we study the effect of nonholonomic constraints on the
behavior of robotic systems. These constraints arise in systems such
as multifingered robot hands and wheeled mobile robots, where rolling
contact is involved, as well as in systems where angular momentum is
conserved. We discuss the problem of determining when constraints on
the velocities of the configuration variables of a robotic system are inte-
grable, and illustrate the problem in a variety of different situations. The
emphasis of this chapter is on the basic tools needed to analyze nonholo-
nomic systems and the application of those tools to problems in robotic
manipulation. These tools are drawn both from some basic theorems in
differential geometry and from nonlinear control theory.

1 Introduction

In the preceding chapter, we derived the equations of motion for a robotic
system with kinematic constraints. We restricted ourselves to Pfaffian
constraints which had the general form

J(θ, x)θ̇ = GT (θ, x)ẋ, (7.1)

where q = (θ, x) ∈ Rn is the configuration of the system. As we saw,
equations of this form could be used to model a large number of robotic
systems, including multifingered hands, robots in contact with their en-
vironment, and redundant manipulators.

By shifting our notation slightly, we can write the preceding con-
straints in the form

ωi(q)q̇ = 0 i = 1, . . . , k, (7.2)

317

where the ωi(q) are row vectors. We assume that the ωi are linearly
independent at each point q ∈ Rn, since if they are not, the dependent
constraints may be eliminated. Each ωi describes one constraint on the
directions in which q̇ is permitted to take values.

Recall from Chapter 6 that a constraint is said to be holonomic if it
restricts the motion of a system to a smooth hypersurface of the configu-
ration space. It will be convenient to adopt some language and notation
from differential geometry, so we call this smooth hypersurface a manifold.
Locally, a holonomic constraint can be represented as a set of algebraic
constraints on the configuration space,

hi(q) = 0, i = 1, . . . , k. (7.3)

The dimension of the manifold on which the motion of the system evolves
is n− k.

We say that a set of k Pfaffian constraints of the form in equation (7.2)
is integrable if there exist functions hi : Rn → R, i = 1, . . . , k such that

hi(q(t)) = 0 ⇐⇒ ωi(q)q̇ = 0 i = 1, . . . , k.

Thus, a set of Pfaffian constraints is integrable if it is equivalent to a set
of holonomic constraints. We often call an integrable Pfaffian constraint
a holonomic constraint, although strictly speaking the former is described
by a set of velocity constraints and the latter by a set of functions. A set
of Pfaffian constraints is said to be nonholonomic if it is not equivalent
to a set of holonomic constraints.

As we saw in Chapter 6, the presence of nonholonomic constraints
requires special care in deriving the equations of motion for the system.
The point of view taken in this chapter is somewhat different. Here, we
will try to understand when we can exploit the nonholonomy of the con-
straints to achieve motion between configurations. In particular, we will
be interested in answering the following question: given two points q0
and qf , when does there exist a path q(t) which satisfies the constraints
in equation (7.2) at all times and connects q0 to qf? The set of all points
which can be connected to q0 via a path which satisfies the constraints is
called the reachable set associated with q0. Thus, we wish to understand
under what conditions the reachable set will be the entire configuration
space. This is intimately related to the nonholonomy of the constraints,
since if the constraints are holonomic, then the motion of the system is
restricted to the level sets given by hi(q) = hi(q0), i = 1, . . . , k. Hence,
for holonomic constraints the reachable set is some subset of the config-
uration space which lies in the level set hi(q) = hi(q0), and we cannot
move freely between configurations on different level sets.

A good example of the type of behavior which we wish to exploit is
that of an automobile. The kinematics of an automobile are constrained
because the front and rear wheels are only allowed to roll and spin, but

318

not to slide sideways. As a consequence, the car itself is not capable
of sliding sideways, or rotating in place. Despite this, we know from
our own experience that we can park an automobile at any position and
orientation. Thus, the constraints are not holonomic since the motion
of the system is unrestricted. Finding an actual path between two given
configurations is an example of a nonholonomic motion planning problem
and is the subject of the next chapter.

Checking to see if a constraint is holonomic or nonholonomic is neither
easy nor obvious. Consider first the case in which there is a single velocity
constraint,

ω(q)q̇ =
n∑

j=1

ωj(q)q̇j = 0.

This constraint is integrable if there exists a function h : Rn → R such
that

ω(q)q̇ = 0 ⇐⇒ h(q) = 0.

It follows by differentiating h(q) = 0 with respect to time that if the
Pfaffian constraint is holonomic then

n∑

j=1

ωj(q)q̇j = 0 =⇒
n∑

j=1

∂h

∂qj
q̇j = 0.

In turn, this implies that there exists some function α(q), called an inte-
grating factor, such that

α(q)ωj(q) =
∂h

∂qj
(q) j = 1, . . . , n. (7.4)

Thus, a single Pfaffian constraint is holonomic if and only if there exists
an integrating factor α(q) such that α(q)ω(q) is the derivative of some
function h.

Equation (7.4) is not very constructive from the point of view of check-
ing integrability since it involves the unknown function h(q). This situa-
tion may be remedied by using the fact that

∂2h

∂qi∂qj
=

∂2h

∂qj∂qi

to get
∂(αωj)

∂qi
=
∂(αωi)

∂qj
i, j = 1, . . . , n. (7.5)

Equation (7.5) states that the constraint is equivalent to h(q) = 0 if there
exists some integrating factor α(q) for which the equation (7.5) is true.
This should really not be a surprise since

ω(q)q̇ = 0 =⇒ α(q)ω(q)q̇ = 0

319

for all choices of smooth functions α(q). However, one still has to find a
function α which satisfies equation (7.5).

The question of integrability becomes much more difficult in the pres-
ence of multiple Pfaffian constraints. Given a set of k constraints of the
form of equation (7.2), not only does one need to check whether each
one of the k constraints is integrable, but also which independent linear
combinations of these,

k∑

i=1

αi(q)ωi(q)q̇,

are integrable. That is, even if the given constraints are not individually
integrable, they may contain a set of integrable constraints. Thus, there
may exist functions hi for i = 1, . . . , p with p ≤ k such that

span{∂h1

∂q
(q), . . . ,

∂hp
∂q

(q)} ⊂ span{ω1(q), . . . , ωk(q)}

for all q. If it is possible to find these functions, the motion of the system
is restricted to level surfaces of h, namely to sets of the form

{q : h1(q) = c1, . . . , hp(q) = cp}.

If p = k, then the constraints are holonomic. In the case that p < k, the
constraints are not holonomic (since they are not completely equivalent
to a set of holonomic constraints) but the reachable points of the system
are still restricted. Thus the constraints are “partially holonomic.” We
will be primarily interested in the case in which the constraints do not
restrict the reachable configurations. We refer to this situation as being
completely nonholonomic.

It will be convenient for us to convert problems with nonholonomic
constraints into another form. Roughly speaking, we would like to ex-
amine the systems not from the point of view of the constraints (namely,
the directions that we cannot move), but rather from the viewpoint of
the directions in which we are free to move. We begin by choosing a
basis for the right null space of the constraints, denoted by gj(q) ∈ Rn,
i = 1, . . . , n− k =: m. By construction, this basis satisfies

ωi(q)gj(q) = 0
i = 1, . . . , k

j = 1, . . . , n− k,

and the allowable trajectories of the system can thus be written as the
possible solutions of the control system

q̇ = g1(q)u1 + · · ·+ gm(q)um. (7.6)

That is, q(t) is a feasible trajectory for the system if and only if q(t)
satisfies equation (7.6) for some choice of controls u(t) ∈ Rm.

320

In this context, a constraint is completely nonholonomic if the corre-
sponding control system can be steered between any two points. Thus
the reachable configurations of the system are not restricted. Conversely,
if a constraint is holonomic, then all motions of the system must lie on
an appropriate constraint surface and the corresponding control system
can only be steered between points on the given manifold. Hence, we can
study the nature of Pfaffian constraints by studying the controllability
properties of equation (7.6).

Nonholonomic constraints arise in a variety of applications. Besides
rolling constraints on multifingered hands, nonholonomic constraints play
an important role in the study of mobile robot systems and space-based
robotic systems (in which conservation of angular momentum plays the
role of a nonholonomic constraint). For these applications the primary
question is that of reachability: when can we find a path between two
arbitrary configurations and how do we go about computing such a path?

The outline of this chapter is as follows: in Section 2 we develop some
tools from differential geometry and nonlinear control. Section 3 gives
examples of systems with velocity constraints. In Section 4 the structure
of nonholonomic systems is explored and the examples of Section 3 are
analyzed. In the next chapter, we will develop methods for planning
paths compatible with nonholonomic constraints.

Both this chapter and Chapter 8 are slightly more advanced in flavor
than the previous chapters and represent some of the recent research in
the robotics literature. Nonholonomic behavior also plays a strong role in
many problems in geometric mechanics, which we touch on only briefly
in the examples and exercises. In classical mechanics, nonholonomic be-
havior is closely related to the geometric phase associated with a group
symmetry in a Hamiltonian or Lagrangian system. A good introduction
to these concepts can be found in the lecture notes by Marsden [67].

2 Controllability and Frobenius’ Theorem

In the previous section, we saw the difficulties in trying to determine
whether or not constraints on a system were holonomic (or integrable).
Further, if they are not holonomic, it is not completely clear as to when
they are completely nonholonomic. In this section, we will develop the
machinery needed for analyzing nonholonomic systems, in particular for
answering the question of when a set of Pfaffian constraints is holonomic.

The tools we develop are based on a variety of results from differential
geometry and nonlinear control theory, more specifically Frobenius’ theo-
rem and nonlinear controllability. To keep the mathematical prerequisites
to a minimum, we do all the calculations in Rn and restrict ourselves to
drift-free control systems (i.e., control systems whose state remains fixed
when the input is turned off). Many of the proofs in this section rely on

321

some properties of manifolds which we have omitted from the discussion;
they can be skipped without loss of continuity. A good introduction to
nonlinear control theory which includes many of the necessary differential
geometric concepts can be found in Isidori [43] or Nijmeijer and van der
Schaft [83].

2.1 Vector fields and flows

We restrict our attention to Rn. We choose to make a distinction, how-
ever, between the space and its tangent space at a given point. A point
of contact with Chapter 2 is our insistence there on making a distinction
between points and vectors in R3 and enforcing the distinction by aug-
menting points by 1 and vectors by 0. Denote by TqR

n the tangent space
to Rn at a point q ∈ Rn. A vector field on Rn is a smooth map which
assigns to each point q ∈ Rn a tangent vector f(q) ∈ TqR

n. In local
coordinates, we represent f as a column vector whose elements depend
on q,

f(q) =




f1(q)

...
fn(q)



 .

A vector field is smooth if each fi(q) is smooth.
Vector fields are to be thought of as right-hand sides of differential

equations:
q̇ = f(q). (7.7)

The rate of change of a smooth function V : Rn → R along the flow of f
is given by

V̇ =
∂V

∂q
f(q) =

n∑

i=1

∂V

∂qi
fi.

The time derivative of V along the flow of f is referred to as the Lie
derivative of V along f and is denoted LfV :

LfV :=
∂V

∂q
f(q).

Associated with a vector field, we define the flow of a vector field
to represent the solution of the differential equation (7.7). Specifically,

φft (q) represents the state of the differential equation at time t starting

from q at time 0. Thus φft : Rn → Rn satisfies

d

dt
φft (q) = f(φft (q)) q ∈ Rn.

A vector field is said to be complete if its flow is defined for all t. By the
existence and uniqueness theorem of ordinary differential equations, for

322

g2

net motion

−ǫg1

ǫg2

ǫg1

−ǫg2

g1

nonzero

Figure 7.1: A Lie bracket motion.

each fixed t, φft is a local diffeomorphism of Rn onto itself. Further, it
satisfies the following group property:

φft ◦ φfs = φft+s,

for all t and s, where ◦ stands for the composition of the two flows, namely
φft (φ

f
s (q)).

2.2 Lie brackets and Frobenius’ theorem

Given two vector fields g1 and g2, the map φg1t ◦ φg2s stands for the com-
position of the flow of g2 for s seconds with the flow of g1 for t seconds.
In general, this quantity is different from the map φg2s ◦φg1t , which stands
for the composition in reverse order. Indeed, consider the flow depicted
in Figure 7.1 starting from q0. It consists of a flow along g1 for ǫ seconds
followed by a flow along g2 for ǫ seconds, −g1 for ǫ seconds, and −g2 for ǫ
seconds. For ǫ small, we may evaluate the Taylor series in ǫ for the state
of the differential equation as

q(ǫ) = φg1ǫ (q(0))

= q(0) + ǫq̇(0) +
1

2
ǫ2q̈(0) +O(ǫ3)

= q0 + ǫg1(q0) +
1

2
ǫ2
∂g1
∂q

g1(q0) +O(ǫ3),

where the notation O(ǫk) represents terms of order ǫk and the partial
derivative of g1 is evaluated at q0.

323

Now evaluating at time 2ǫ,

q(2ǫ) = φg2ǫ ◦ φg1ǫ (q0)

= φg2ǫ (q0 + ǫg1(q0) +
ǫ2

2

∂g1
∂q

g1(q0) +O(ǫ3))

= q0 + ǫg1(q0) +
1

2
ǫ2
∂g1
∂q

g1(q0)

+ ǫg2(q0 + ǫg1(q0)) +
ǫ2

2

∂g2
∂q

g2(q0) +O(ǫ3)

= q0 + ǫ(g1(q0) + g2(q0))

+
1

2
ǫ2(

∂g1
∂q

g1(q0) +
∂g2
∂q

g2(q0) + 2
∂g2
∂q

g1(q0)) +O(ǫ3).

Here, we have used the Taylor series expansion for g2(q0 + ǫg1(q)) =
g2(q0) + ǫ∂g2∂q g1(q0) + O(ǫ2). At the next step (we invite the reader to

verify this), we get

q(3ǫ) = φ−g1ǫ ◦ φg2ǫ ◦ φg1ǫ (q0)

= q0 + ǫg2(q0)

+
ǫ2

2
(
∂g2
∂q

g2(q0) + 2
∂g2
∂q

g1(q0)− 2
∂g1
∂q

g2(q0)) +O(ǫ3).

Finally, we get

q(4ǫ) = φ−g2ǫ ◦ φ−g1ǫ ◦ φg2ǫ ◦ φg1ǫ (q0)

= q0 + ǫ2(
∂g2
∂q

g1(q0)−
∂g1
∂q

g2(q0)) +O(ǫ3).
(7.8)

Motivated by this calculation, we define the Lie bracket of two vector
fields f and g as

[f, g](q) =
∂g

∂q
f(q)− ∂f

∂q
g(q).

The Lie bracket is thus the infinitesimal motion (actually of order ǫ2)
that results from flowing around a square defined by two vector fields
f and g. If [f, g] = 0 then it can be shown that the right hand side of
equation (7.8) is identically equal to q0 and f and g are said to commute.
A Lie product is a nested set of Lie brackets, for example,

[[f, g], [f, [f, g]]].

Example 7.1. Lie brackets of linear vector fields
Consider two linear vector fields given by f(q) = Aq and g(q) = Bq.
Then the Lie bracket of the two linear vector fields is a linear vector field
given by

[f, g](q) = (BA−AB)q,

that is, it is the commutator of the two matrices A,B.

324

The following properties of Lie brackets follow from the definition.
Their proof is left as an exercise.

Proposition 7.1. Properties of Lie brackets
Given vector fields f, g, h on Rn and smooth functions α, β : Rn → R,
the Lie bracket satisfies the following properties:

1. Skew-symmetry:
[f, g] = −[g, f]

2. Jacobi identity:

[f, [g, h]] + [h, [f, g]] + [g, [h, f]] = 0

3. Chain rule:

[αf, βg] = αβ[f, g] + α(Lfβ)g − β(Lgα)f,

where Lfβ and Lgα stand for the Lie derivatives of β and α along
the vector fields f and g respectively.

An alternative method of defining the Lie bracket of two vector fields
f and g is to require that it satisfies for all smooth functions α : Rn → R:

L[f,g]α = Lf (Lgα)− Lg(Lfα).

The reader should carefully parse the previous equation and convince
herself of this fact.

A distribution assigns a subspace of the tangent space to each point
in Rn in a smooth way. A special case is a distribution defined by a set
of smooth vector fields, g1, . . . , gm. In this case we define the distribution
as

∆ = span{g1, . . . , gm},
where we take the span over the set of smooth real-valued functions on
Rn. Evaluated at any point q ∈ Rn, the distribution defines a linear
subspace of the tangent space

∆q = span{g1(q), . . . , gm(q)} ⊂ TqRn.

The distribution is said to be regular if the dimension of the subspace ∆q

does not vary with q. A distribution is involutive if it is closed under the
Lie bracket, i.e.,

∆ involutive ⇐⇒ ∀f, g ∈ ∆, [f, g] ∈ ∆.

For a finite dimensional distribution it suffices to check that the Lie brack-
ets of the basis elements are contained in the distribution. The involutive
closure of a distribution, denoted ∆, is the closure of ∆ under bracketing;
that is, ∆ is the smallest distribution containing ∆ such that if f, g ∈ ∆
then [f, g] ∈ ∆.

325

Definition 7.1. Lie algebra
A vector space V (over R) is a Lie algebra if there exists a bilinear op-
eration V × V → V , denoted [,], satisfying (i) skew-symmetry and (ii)
the Jacobi identity.

The set of smooth vector fields on Rn with the Lie bracket is a Lie
algebra, and is denoted X(Rn). Let g1, . . . , gm be a set of smooth vec-
tor fields, ∆ the distribution defined by g1, . . . , gm and, ∆ the involutive
closure of ∆. Then, ∆ is a Lie algebra (in fact the smallest Lie al-
gebra containing g1, . . . , gm). It is called the Lie algebra generated by
g1, . . . , gm and is often denoted L(g1, . . . , gm). Elements of L(g1, . . . , gm)
are obtained by taking all linear combinations of elements of g1, . . . , gm,
taking Lie brackets of these, taking all linear combinations of these, and
so on. We define the rank of L(g1, . . . , gm) at a point q ∈ Rn to be the
dimension of ∆q as a distribution.

A distribution ∆ of constant dimension k is said to be integrable if for
every point q ∈ Rn, there exists a set of smooth functions hi : Rn → R,
i = 1, . . . , n − k such that the row vectors ∂hi

∂q are linearly independent
at q, and for every f ∈ ∆

Lfhi =
∂hi
∂q

f(q) = 0 i = 1, . . . , n− k. (7.9)

The hypersurfaces defined by the level sets

{q : h1(q) = c1, . . . , hn−k(q) = cn−k}

are called integral manifolds for the distribution. If we regard an integral
manifold as a smooth surface in Rn, then equation (7.9) requires that
the distribution be equal to the tangent space of that surface at the point
q.

Integral manifolds are related to involutive distributions by the fol-
lowing celebrated theorem.

Theorem 7.2 (Frobenius). A regular distribution is integrable if and
only if it is involutive.

Thus, if ∆ is an k-dimensional involutive distribution, then locally
there exist n − k functions hi : Rn → R such that integral manifolds of
∆ are given by the level surfaces of h = (h1, . . . , hn−k). These level
surfaces form a foliation of Rn. A single level surface is called a leaf of
the foliation.

Associated with the tangent space TqR
n is the dual space T ∗

q Rn, the
set of linear functions on TqR

n. Just as we defined vector fields on Rn, we
define a one-form as a map which assigns to each point q ∈ Rn a covector
ω(q) ∈ T ∗

q Rn. In local coordinates we represent a smooth one-form as a
row vector

ω(q) =
[
ω1(q) ω2(q) · · · ωn(q)

]
.

326

Differentials of smooth functions are good examples of one-forms. For
example, if β : Rn → R, then the one-form dβ is given by

dβ =
[
∂β
∂q1

∂β
∂q2

· · · ∂β
∂qn

]
.

Note, however, that all one-forms are not necessarily the differentials of
smooth functions (a one-form which does happen to be the derivative of
a function is said to be exact).

A one-form acts on a vector field to give a real-valued function on Rn

by taking the inner product between the row vector ω and the column
vector f :

ω · f =
∑

i

ωifi.

A codistribution assigns a subspace of T ∗
q Rn smoothly to each q ∈ Rn. A

special case is a codistribution obtained as a span of a set of one-forms,

Ω = span{ω1, . . . , ωm},

where the span is over the set of smooth functions. As before, the rank
of the codistribution is the dimension of Ωq. The codistribution Ω is said
to be regular if its rank is constant.

To begin our study of motion planning for nonholonomic systems,
our first task is to convert the specified constraints given as one-forms
into an equivalent control system. To this end, consider the problem of
constructing a path q(t) ∈ Rn between a given q0 and qf subject to the
constraints

ωi(q)q̇ = 0 i = 1, . . . , k.

The ωi’s are linear functions on the tangent spaces of Rn, i.e., one-forms.
We assume that the ωi’s are smooth and linearly independent over the
set of smooth functions. The following proposition is a formalization of
the discussion of the introduction.

Proposition 7.3. Distribution annihilating constraints
Given a set of one-forms ωi(q), i = 1, . . . , k, there exist smooth, linearly
independent vector fields gj(q), j = 1, . . . , n−k such that ωi(q) ·gj(q) = 0
for all i and j.

Proof. The ωi’s form a codistribution of dimension k in Rn. We can
choose local coordinates such that the set of one-forms is given by

ω̃i =
[
0 · · · 1 · · · 0 αi,k+1 · · · αin

]
,

where the 1 in the preceding equation is in the ith entry, and the functions

327

αil : Rn → R are smooth functions. Define

gj :=





−α1,(j+k)

...
−αk,(j+k)

0
...
1
...
0





,

where the 1 is in the j +kth entry. The gj ’s are linearly independent and
annihilate the constraints since

ω̃i · gj = αi(j+k) − αi(j+k) = 0.

This shows that ωi · gj = 0 for i = 1, . . . , k and j = 1, . . . , n− k.
In the language of distributions and codistributions, the results of this

proposition are expressed by defining the codistribution

Ω = span{ω1, . . . , ωk}

and the distribution

∆ = span{g1, . . . , gn−k}

and stating that
∆ = Ω⊥.

We say that the distribution ∆ annihilates the codistribution Ω. The
control system associated with the distribution ∆ is of the form

q̇ = g1(q)u1 + · · ·+ gn−k(q)un−k,

with the controls ui to be freely specified.
These results of this section can be used to determine if a set of

Pfaffian constraints is holonomic:

Proposition 7.4. Integrability of Pfaffian constraints
A set of smooth Pfaffian constraints is integrable if and only if the distri-
bution which annihilates the constraints is involutive.

2.3 Nonlinear controllability

In view of Proposition 7.3, which yields a set of vector fields orthogonal
to a given set of one-forms, it is clear that the motion planning problem

328

is equivalent to steering a control system. Thus, we will now restrict our
attention to control systems of the form

Σ : q̇ = g1(q)u1 + · · ·+ gm(q)um
q ∈ Rn

u ∈ U ⊂ Rm.
(7.10)

This system is said to be drift-free, meaning to say that when the controls
are set to zero the state of the system does not drift. We assume that
the gj are smooth, linearly independent vector fields on Rn and that
their flows are defined for all time (i.e., the gj are complete). We wish
to determine conditions under which we can steer from q0 ∈ Rn to an
arbitrary qf ∈ Rn by appropriate choice of u(·).

A system Σ is controllable if for any q0, qf ∈ Rn there exists a T > 0
and u : [0, T] → U such that Σ satisfies q(0) = q0 and q(T) = qf . A
system is said to be small-time locally controllable at q0 if we can reach
nearby points in arbitrarily small amounts of time and stay near to q0 at
all times. Given an open set V ⊆ Rn, define RV (q0, T) to be the set of
states q such that there exists u : [0, T]→ U that steers Σ from q(0) = q0
to q(T) = qf and satisfies q(t) ∈ V for 0 ≤ t ≤ T . We also define

RV (q0,≤T) =
⋃

0<τ≤T
RV (q0, τ)

to be the set of states reachable up to time T . A system is small-time lo-
cally controllable (locally controllable for brevity) if RV (q0,≤T) contains
a neighborhood of q0 for all neighborhoods V of q0 and T > 0.

Let ∆ = L(g1, . . . , gm) be the Lie algebra generated by g1, . . . , gm. It
is referred to as the the controllability Lie algebra. From the construction
involved in the definition of the Lie bracket in the previous subsection,
we saw that by using an input sequence of

u1 = +1 u2 = 0 for 0 ≤ t < ǫ
u1 = 0 u2 = +1 for ǫ ≤ t < 2ǫ
u1 = −1 u2 = 0 for 2ǫ ≤ t < 3ǫ
u1 = 0 u2 = −1 for 3ǫ ≤ t < 4ǫ,

we get motion in the direction of the Lie bracket [g1, g2]. If we were to
iterate on this sequence, it should be possible to generate motion along
directions given by all the other Lie products associated with the gi.
Thus, it is not surprising that it is possible to steer the system along all
of the directions represented in L(g1, . . . , gm). This is made precise by
the following theorem, which was originally proved by W.-L. Chow (in
somewhat different form) in the 1940s.

Theorem 7.5 (Chow). The control system (7.10) is locally controllable
at q ∈ Rn if ∆q = TqR

n.

329

f2(q)

f3

f2
f2

N2

N1
N1

q0
f1(q0)

f1(q)

Figure 7.2: Proof of local controllability. At each step we can find a
vector field which is not in Nk.

This result asserts that the drift-free system Σ is controllable if the
rank of the controllability Lie algebra is n. The condition of Chow’s
theorem consists of checking the rank of the controllability Lie algebra
and is hence referred to as the controllability rank condition.

To prove Chow’s theorem, we prove the following pair of implications
for a given system Σ in a neighborhood of a point q:

∆q=TqR
n =⇒ intRV (q,≤T) 6={} ⇐⇒ Σ is locally controllable,

where ∆ = L(g1, . . . , gm) and {} stands for the empty set.

Proposition 7.6. Controllability rank condition
If ∆q = TqR

n for all q in some neighborhood of q0, then for any T > 0
and neighborhood V of q0, intRV (q0,≤T) is non-empty.

Proof. The proof is by recursion. Choose f1 ∈ ∆. For ǫ1 > 0 sufficiently
small,

N1 = {φf1t1 (q0) : 0 < t1 < ǫ1}
is a smooth surface (manifold) of dimension one which contains points
arbitrarily close to q0. Without loss of generality, take N1 ⊂ V . Assume
Nk ⊂ V is a k-dimensional manifold. If k < n, there exists q ∈ Nk and
fk+1 ∈ ∆ such that fk+1 /∈ TqNk. If this were not so then ∆q ⊂ TqNk for
any q in some open set W ⊂ Nk, which would imply ∆|W ⊂ TNk. This
cannot be true since dim ∆q = n > dimNk. For ǫk+1 sufficiently small

Nk+1 = {φfk+1

tk+1
◦ · · · ◦ φf1t1 (q0) : 0 < ti < ǫi, i = 1, · · · , k + 1}

is a k + 1 dimensional manifold. Since ǫ can be made arbitrarily small,
we can assume Nk+1 ⊂ V .

If k = n, Nk ⊂ V is an n-dimensional manifold and by construction
Nk ⊂ RV (q0,≤ǫ1 + · · ·+ ǫn). Hence RV (q0, ǫ) contains an open set. By

330

q0

q0

RV (W)

q1 ∈W ⊂ RV (q0)

q1

RV (q0)

Figure 7.3: Proof of local controllability. To show RV (q0) contains a
neighborhood of the origin, we move to any point qf and map a neigh-
borhood of qf to a neighborhood of q0 by reversing our original path.

restricting each ǫi ≤ T/n, we can find such an open set for any T > 0.
This proof is illustrated in Figure 7.2.

Having established conditions under which the set intRV (q,≤ T) is
not empty, we would like to determine if the set can be chosen so as to
have q0 in its interior. This is the subject of the next proposition:

Proposition 7.7. Local controllability
The interior of the set RV (q0,≤T) is non-empty for all neighborhoods V
of q0 and T > 0 if and only if Σ is locally controllable at q0.

Proof. The sufficiency follows from the definition of locally controllable.
To prove necessity, we need to show that RV (q0,≤T) contains a neigh-
borhood of q0. Choose a piecewise constant u : [0, T/2]→ U such that u
steers q0 to some qf ∈ RV (q0,≤T/2) and q(t) ∈ V . Let φut be the flow
corresponding to this input (as given in the proof of the previous theo-
rem). Since Σ is drift-free, we can flow backwards from qf to q0 using
u′(t) = −u(T/2− t), t ∈ [0, T/2]. The flow corresponding to u′ is (φut)

−1.
By continuity of the flow, there existsW ⊂ RV (q0, T/2) such that qf ∈W
and (φut)

−1(W) ⊂ V for all t. Furthermore, (φuT/2)
−1(W) is a neighbor-

hood of q0. It follows that RV (q0,≤ T) contains a neighborhood of q0
since we can concatenate the inputs which steer q0 to qf ∈W with u′ to
obtain an open set containing q0. This is illustrated in Figure 7.3.

In principle, we now have a recipe for solving the motion planning
problem for systems which meet the controllability rank condition. Given
an initial point q0 and final point qf , find finitely many intermediate via
points q1, q2, . . . , qp ∈ Rn and neighborhoods Vi such that

p⋃

i=1

RVi(qi,≤ T)

331

q1

q2

qp−1 qp

qf
q0

RV∞(∐∞,≤T)
RV∈(∐∈,≤T)

RV√
(∐√,≤T)

Figure 7.4: Steering between q0 and qf .

contains the straight line segment connecting q0 to qf , as shown in Figure
7.4. Then there exists a control law of p segments which steers from q0
to qf . The difficulty with this procedure and the preceding theorems in
this section is that they are non-constructive. It is in principle possible
to solve the motion planning problem for a given set of constraints of the
form

ωi(q)q̇ = 0 i = 1, . . . , k

for arbitrary given q0 and qf , provided that the associated control system

q̇ = g1(q)u1 + · · ·+ gn−k(q)un−k

has a full rank controllability Lie algebra. However, the preceding the-
orems do not give a constructive procedure for generating paths for the
system joining q0 and qf . This constructive controllability is the goal of
the next chapter.

3 Examples of Nonholonomic Systems

We now present a set of examples of systems with nonholonomic con-
straints which we will use repeatedly throughout this chapter and the
next to illustrate the different concepts. Nonholonomic constraints arise
in two kinds of situations:

1. Bodies in contact with each other which roll without slipping

2. Conservation of angular momentum in a multibody system

An example of the first kind can be found in the problem of dextrous
manipulation with a multifingered robot hand. Here the nonholonomic
constraint arises from the fingers rolling without slipping on the surface
of a grasped object. Other such examples arise in path planning problems
for mobile robots or automobiles, where the wheels roll without slipping.
For examples of the second kind, we have motion of a satellite with robotic

332

l

θ

ψ

d

Figure 7.5: A simple hopping robot.

appendages moving in space, where angular momentum is conserved, or
a diver or gymnast in mid-air maneuvers.

In the sequel, we will give a description of several nonholonomic sys-
tems. The proof of their nonholonomy (that is the impossibility of finding
functions of the configuration variables which are “integrals” of the con-
straints) is deferred to Section 4.

Example 7.2. Hopping robot in flight
As our first example, we consider the dynamics of a hopping robot in
the flight phase, as shown in Figure 7.5. This robot consists of a body
with an actuated leg that can rotate and extend; the “constraint” on the
system is conservation of angular momentum.

The configuration q = (ψ, l, θ) consists of the leg angle, the leg exten-
sion, and the body angle of the robot. We denote the moment of inertia
of the body by I and concentrate the mass of the leg, m, at the foot.
The upper leg length is taken to be d, with l representing the extension
of the leg past this point. The total angular momentum of the robot is
given by

Iθ̇ +m(l + d)2(θ̇ + ψ̇). (7.11)

Assume that the angular momentum of the robot is initially zero. Equa-
tion (7.11) is a single Pfaffian constraint in the three velocities ψ̇, l̇, and θ̇.
Thus, the associated control system has two inputs—three configuration
variables minus one constraint. As a basis for the 2-dimensional right
null space of the constraint, we choose one vector field corresponding to
controlling the leg angle ψ, and the other corresponding to controlling

333

θ

ψ2

ψ1

l

m
r

Figure 7.6: A simplified model of a planar space robot.

the leg extension l; i.e., set ψ̇ = u1 and l̇ = u2. Then, we have

g1(q) =




1
0

− m(l+d)2

I+m(l+d)2



 g2(q) =




0
1
0





and the equivalent control system is given by

q̇ = g1(q)u1 + g2(q)u2.

Example 7.3. Planar space robot
Figure 7.6 shows a simplified model of a planar robot consisting of two
arms connected to a central body via revolute joints. If the robot is free
floating, then the law of conservation of angular momentum implies that
moving the arms causes the central body to rotate. In the case that
the angular momentum is zero, this conservation law can be viewed as a
Pfaffian constraint on the system.

Let M and I represent the mass and inertia of the central body and
let m represent the mass of the arms, which we take to be concentrated
at the tips. The revolute joints are located a distance r from the middle
of the central body and the links attached to these joints have length
l. We let (x1, y1) and (x2, y2) represent the position of the ends of each
of the arms (in terms of θ, ψ1, and ψ2). Assuming that the body is
free floating in space and that friction is negligible, we can derive the
constraints arising from conservation of angular momentum.

334

Let θ be the angle of the central body with respect to the horizontal,
ψ1 and ψ2 the angles of the left arm and right arms with respect to the
central body, and p ∈ R2 the location of a point on the central body (say
the center of mass). The kinetic energy of the system has the form

K =
1

2
(M + 2m)‖ṗ‖2 +

1

2
Iθ̇2 +

1

2
m(ẋ2

1 + ẏ2
1) +

1

2
m(ẋ2

2 + ẏ2
2)

=
1

2
(M + 2m)‖ṗ‖2 +

1

2




ψ̇1

ψ̇2

θ̇





T 


a11 a12 a13

a12 a22 a23

a13 a23 a33








ψ̇1

ψ̇2

θ̇



 ,

where aij can be calculated as

a11 = a22 = ml2

a12 = 0

a13 = ml2 +mr cosψ1

a23 = ml2 +mr cosψ2

a33 = I + 2ml2 + 2mr2 + 2mrl cosψ1 + 2mrl cosψ2.

Note that the kinetic energy of the system is independent of the variable
θ. It therefore follows from Lagrange’s equations that in the absence of
external forces,

d

dt

∂L

∂θ̇
=
∂L

∂θ
= 0.

Thus the quantity ∂L
∂θ̇

is a constant of the motion. This is precisely the
angular momentum, µ, of the system:

µ =
∂L

∂θ̇
= a13ψ̇1 + a23ψ̇2 + a33θ̇.

If the initial angular momentum is zero, then conservation of angular
momentum ensures that the angular momentum stays zero, giving the
following constraint equation

a13(ψ)ψ̇1 + a23(ψ)ψ̇2 + a33(ψ)θ̇ = 0. (7.12)

Since the variables that are actuated are the hinge angles of the left
and right arm, we choose as inputs u1 = ψ̇1 and u2 = ψ̇2. Using these in
equation (7.12) and setting q = (ψ1, ψ2, θ), we get

q̇ = g1(q)u1 + g2(q)u2

where

g1(q) =




1
0

−a13

a33



 g2(q) =




0
1

−a23

a33



 .

335

θ

φ

(x, y)

Figure 7.7: Disk rolling on a plane.

Example 7.4. Disk rolling on a plane
Consider the motion of a thin flat disk rolling on a plane shown in Fig-
ure 7.7. The configuration space of the system is parameterized by the
xy location of the contact point of the disk with the plane, the angle θ
that the disk makes with the horizontal line, and the angle φ of a fixed
line on the disk with respect to the vertical axis. We assume that the
disk rolls without slipping. As a consequence we have that

ẋ− ρ cos θ φ̇ = 0

ẏ − ρ sin θ φ̇ = 0,

where ρ > 0 is the radius of the disk. Writing these equations in the form
of Pfaffian constraints with q = (x, y, θ, φ) we have

[
1 0 0 −ρ cos θ
0 1 0 −ρ sin θ

]
q̇ = 0.

Choosing θ̇ = u1, the rate of rolling, and φ̇ = u2, the rate of turning
about the vertical axis, we have the associated control system:

q̇ =





ρ cos θ
ρ sin θ

0
1



u1 +





0
0
1
0



u2. (7.13)

Example 7.5. Kinematic car
Consider a simple kinematic model for an automobile with front and rear
tires, as shown in Figure 7.8. The rear tires are aligned with the car, while
the front tires are allowed to spin about the vertical axes. To simplify the
derivation, we model the front and rear pairs of wheels as single wheels
at the midpoints of the axles. The constraints on the system arise by
allowing the wheels to roll and spin, but not slip.

Let (x, y, θ, φ) denote the configuration of the car, parameterized by
the xy location of the rear wheel(s), the angle of the car body with

336

y

x

l

φ

θ

Figure 7.8: Kinematic model of an automobile.

respect to the horizontal, θ, and the steering angle with respect to the
car body, φ. The constraints for the front and rear wheels are formed
by setting the sideways velocity of the wheels to zero. In particular, the
velocity of the back wheels perpendicular to their direction is sin θẋ −
cos θẏ and the velocity of the front wheels perpendicular to the direction
they are pointing is sin(θ+φ)ẋ−cos(θ+φ)ẏ−lθ̇ cosφ, so that the Pfaffian
constraints on the automobile are:

sin(θ + φ)ẋ− cos(θ + φ)ẏ − l cosφ θ̇ = 0

sin θ ẋ− cos θ ẏ = 0.

Converting this to a control system with the inputs chosen as the
driving velocity u1 and the steering velocity u2 gives





ẋ
ẏ

θ̇

φ̇



 =





cos θ
sin θ

1
l tanφ

0



u1 +





0
0
0
1



u2. (7.14)

For this choice of vector fields, u1 corresponds to the forward velocity of
the rear wheels of the car and u2 corresponds to the velocity of the angle
of the steering wheel.

Example 7.6. Fingertip rolling on an object
Let us analyze the motion of a curved fingertip over a curved object. As
we discussed in Section 6 of Chapter 5, we parameterize the object surface
by αo ∈ R2, the fingertip surface by αf ∈ R2, and the angle of contact
by ψ ∈ S1, giving a 5-dimensional configuration space. The kinematic

337

equations of contact are given by

α̇f = M−1
f (Kf + K̃o)

−1

([
−ωy
ωx

]
− K̃o

[
vx
vy

])

α̇o = M−1
o Rψ(Kf + K̃o)

−1

([
−ωy
ωx

]
+Kf

[
vx
vy

])

ψ̇ = ωz + TfMf α̇f + ToMoα̇o.

(7.15)

The rolling constraint is obtained by setting the sliding velocity and the
velocity of rotation about the contact normal to zero:

[
vx
vy

]
= 0 ωz = 0. (7.16)

Substituting (7.16) into equation (7.15) yields the following constraints:

Mf α̇f −RψMoα̇o = 0

TfMf α̇f + ToMoα̇o − ψ̇ = 0.
(7.17)

If we set q = (αf , αo, ψ) ∈ R5, then the foregoing set of three constraints
is of the form

ωi(q)q̇ = 0 i = 1, 2, 3.

To obtain a control system associated with these constraints, we let u1 =
ωx and u2 = ωy in the kinematic equations for rolling contact. After
rearranging the results, we have

q̇ =




M−1
f

M−1
o Rψ

Tf + ToRψ



 (Kf + K̃o)
−1

([
0
1

]
u1 +

[
−1
0

]
u2

)
. (7.18)

We now specialize the example to the case that the object is flat
and the fingertip is a sphere of radius one. The curvature forms, metric
tensors, and torsions for the fingertip and the object have been derived
in Example 5.7 and are reproduced here for convenience:

Ko =

[
0 0
0 0

]
Kf =

[
1 0
0 1

]

Mo =

[
1 0
0 1

]
Mf =

[
1 0
0 cos q1

]

To =
[
0 0

]
Tf =

[
0 − tan q1

]
.

Substituting the above results into (7.17) gives




1 0 − cos q5 sin q5 0
0 cos q1 sin q5 cos q5 0
0 sin q1 0 0 1



 q̇ = 0.

338

In this case, the formula (7.18) gives, with the inputs being the rates of
rolling about the two tangential directions,





q̇1
q̇2
q̇3
q̇4
q̇5




=





0
sec q1
− sin q5
− cos q5
− tan q1




u1 +





−1
0

− cos q5
sin q5

0




u2. (7.19)

4 Structure of Nonholonomic Systems

We return to the problem of motion planning for systems satisfying linear
velocity constraints of the form

ωi(q)q̇ = 0 i = 1, . . . , k.

In Section 2 we showed how the problem of finding feasible trajectories
in the configuration space could be dualized to one of finding trajectories
of the control system

q̇ = g1(q)u1 + · · ·+ gm(q)um, (7.20)

with m = n − k and ωi(q)gj(q) = 0. From the controllability rank
condition, it follows that one can find a trajectory joining an arbitrary
starting point and end point if the rank of the Lie algebra generated by
g1, . . . , gm is n. If ∆q 6= TqR

n and in addition ∆q has a constant rank
n− p which is less than n, then it follows from Frobenius’ theorem that
there exist functions hi(q) = ci, i = 1, . . . , p such that

ωi(q)q̇ = 0 i = 1, . . . , k ⇐⇒ hj(q) = cj j = 1, . . . , p.

Consider this a little further: since the dimension of ∆ is greater than
or equal to the dimension of ∆, it follows that p ≤ k. Thus, the num-
ber of functions whose level sets are tangential to the given distribution
are fewer than the dimension of the distribution. The process of con-
verting from the given constraints, specified as a codistribution, to an
equivalent control system and then integrating the involutive closure of
this distribution may seem to be convoluted. It is indeed possible to deal
directly with a given codistribution and to find the maximal integrable
codistribution contained within it, but this involves methods of exterior
differential systems which are beyond the scope of this book. Of course,
in the event that ∆ = TqR

n for all q, then p = 0, i.e., there are no non-
trivial functions which integrate the given constraints. In this case the
distribution is said to be completely nonholonomic, as was noted earlier.

In this section, we will try to make precise some notation that we will
use in dealing with nonholonomic systems and apply it to the examples

339

that we considered in Section 3. Some additional machinery to study the
growth of the controllability Lie algebra is discussed at the end of this
section.

4.1 Classification of nonholonomic distributions

The complexity of the motion planning problem is related to the or-
der of Lie brackets in its controllability Lie algebra. Here we develop
some concepts which allow us to classify nonholonomic systems. Let
∆ = span{g1, . . . , gm} be the distribution associated with the control
system (7.20). Define ∆1 = ∆ and

∆i = ∆i−1 + [∆1,∆i−1],

where
[∆1,∆i−1] = span{[g, h] : g ∈ ∆1, h ∈ ∆i−1}.

It is clear that ∆i ⊂ ∆i+1. The chain of the distributions ∆i is defined
as the filtration associated with the distribution ∆ = ∆1. Each ∆i is
defined to be spanned by the input vector fields plus the vector fields
formed by taking up to i− 1 Lie brackets of the generators, i.e., elements
of ∆1. The Jacobi identity (see Proposition 7.1, page 325) implies that
[∆i,∆j] ⊂ [∆1,∆i+j−1] ⊂ ∆i+j . The proof of this fact is left as an
exercise.

A filtration is said to be regular in a neighborhood U of q0 if

rank ∆i(q) = rank ∆i(q0) ∀q ∈ U.
We say the control system (7.20) is regular if the corresponding filtration
is regular. If a filtration is regular, then at each step of its construction, ∆i

either gains dimension or ∆i+1 = ∆i, so that the construction terminates.
If rank ∆i+1 = rank ∆i, then ∆i is involutive and hence ∆i+j = ∆i for
all j ≥ 0. Clearly, rank ∆i ≤ n and hence if a filtration is regular, then
there exists an integer κ < n such that ∆i = ∆κ for all i ≥ κ.
Definition 7.2. Degree of nonholonomy
Consider a regular filtration {∆i} associated with a distribution ∆. The
smallest integer κ such that the rank of ∆κ is equal to that of ∆κ+1 is
called the degree of nonholonomy of the distribution.

We know that rank ∆κ ≤ n. In general, let the rank of ∆κ = n − p.
Then, by Frobenius’ theorem there are p functions hi for i = 1, . . . , p
whose level surfaces are the integral manifolds of ∆κ. Thus, the state q
of the control system must be confined to the a level set of the hi’s. This,
then, is the complete answer to the question we posed ourselves at the
beginning of this chapter. The maximum number of functions hi such
that

span{∂h1

∂q
, . . . ,

∂hp
∂q
} ⊂ span{ω1, . . . , ωk}

340

is given to be the set of functions such that

span{∂h1

∂q
, . . . ,

∂hp
∂q
} = (∆)⊥

by Frobenius’ theorem. If p = 0, that is rank ∆κ is equal to n, then
there are no nontrivial functions hi and it is possible to steer between
arbitrary given initial and final points. This is Chow’s theorem, which
was discussed in the previous section. Chow’s theorem is actually also
valid when the filtration ∆i is not regular, as long as ∆ is smooth and
constant rank.

We now give a definition which serves to classify the growth of a
filtration:

Definition 7.3. Growth vector, relative growth vector
Consider a regular filtration associated with a given distribution ∆ and
having degree of nonholonomy κ. For such a system, we define the growth
vector r ∈ Zκ as

ri = rank ∆i.

We define the relative growth vector σ ∈ Zκ as σi = ri− ri−1 and r0 := 0.

The growth vector for a regular filtration is a convenient way to rep-
resent complexity information about the associated controllability Lie
algebra.

4.2 Examples of nonholonomic systems, continued

In this subsection, we illustrate the classification of nonholonomic systems
on the examples that were developed in Section 3.

Example 7.7. Hopping robot in flight
Recall from Section 3 that the configuration space for the hopping robot
in flight is given by (ψ, l, θ): the leg angle, leg extension, and body angle
of the robot. Since we control the leg angle and extension directly, we
choose their velocities as our inputs and the control system associated
with the hopper is given by

ψ̇ = u1

l̇ = u2

θ̇ = − m(l + d)2

I + (l + d)2
u1.

The controllability Lie algebra is given by

g1 =




1
0

− m(l+d)2

I+(l+d)2



 g2 =




0
1
0



 g3 = [g1, g2] =




0
0

2Im(l+d)
(I+m(l+d)2)2



 .

341

In a neighborhood of l = 0, span{g1, g2, g3} is full rank and hence the
hopping robot has degree of nonholonomy 2 with growth vector (2, 3) and
relative growth vector (2, 1).

Example 7.8. Planar space robot
From Example 7.3, we have that the angular momentum conservation
constraint yields

a13(ψ)θ̇1 + a23(ψ)θ̇2 + a33(ψ)θ̇ = 0,

where the vector of configuration variables is q = (ψ1, ψ2, θ). Using the
control equations derived in Example 7.3, we have

g1 =




1
0

− ml2+mr cosψ1

I+2ml2+2mr2+2mrl cosψ1+2mrl cosψ2





g2 =




1
0

− ml2+mr cosψ2

I+2ml2+2mr2+2mrl cosψ1+2mrl cosψ2





and the Lie bracket is

g3 = [g1, g2] =




0
0

2m2l2r(−l sinψ1−r sin(ψ1−ψ2)+l sinψ2)
(I+2ml2+2mr2+2mlr cosψ1+2mlr cosψ2)2



 .

The vector field g3 is zero when ψ1 = ψ2 and hence the filtration {∆i}
is not regular. By computing higher order Lie brackets, however, it is
possible to show that ∆q = TqR

3 in a neighborhood of q = 0 and the
system is controllable.

Example 7.9. Disk rolling on a plane
From Example 7.4, the control system which describes a disk rolling on
a plane is described by the distribution spanned by

g1 =





ρ cos θ
ρ sin θ

0
1



 g2 =





0
0
1
0



 .

The control Lie algebra is constructed by computing the following vector
fields:

g3 = [g1, g2] =





ρ sin θ
−ρ cos θ

0
0



 g4 = [g2, g3] =





ρ cos θ
ρ sin θ

0
0



 .

342

For all q, span{g1, g2, g3, g4} is full rank and hence the rolling disk has
degree of nonholonomy 3 with growth vector (2, 3, 4). The relative growth
vector for this system is (2, 1, 1).

Example 7.10. Kinematic car
Recall that (x, y, θ, φ) denotes the configuration of the car, parameterized
by the location of the rear wheel(s), the angle of the car body with respect
to the horizontal, and the steering angle with respect to the car body.
The constraints for the front and rear wheels to roll without slipping are
given by the following equations:

sin(θ + φ)ẋ− cos(θ + φ)ẏ − l cosφ θ̇ = 0

sin θ ẋ− cos θ ẏ = 0.

Converting this to a control system with the driving and steering velocity
as inputs gives the control system of equation (7.14).

To calculate the growth vector, we build the filtration

g1 =





cos θ
sin θ

1
l tanφ

0



 g2 =





0
0
0
1





g3 = [g1, g2] =





0
0

− 1
l cos2 φ

0



 g4 = [g1, g3] =





− sin θ
l cos2 φ
cos θ
cos2 φ

0
0



 .

The vector fields {g1, g2, g3, g4} are linearly independent when φ 6= ±π.
Thus the system has degree of nonholonomy 3 with growth vector r =
(2, 3, 4) and relative growth vector σ = (2, 1, 1). The system is regular
away from φ = ±π/2, at which point g1 is undefined.

Example 7.11. Spherical finger rolling on a plane
Let the inputs be the two components of rolling velocities, i.e., u1 = ωx
and u2 = ωy. The associated control system is derived in (7.19), which
in vector field form reads

g1 =





0
sec q1
− sin q5
− cos q5
− tan q1




g2 =





−1
0

− cos q5
sin q5

0




.

343

Constructing the filtration, we have

g3 = [g1, g2] =





0
tan q1 sec q1
− tan q1 sin q5
− tan q1 cos q5
− sec2 q1




g4 = [g1, g3] =





0
0

− cos q5
sin q5

0





g5 = [g2, g3] =





0
−(1 + sin2 q1) sec3 q1

2 sin q5 sec2 q1
2 cos q5 sec2 q1
2 tan q1 sec2 q1




.

In a neighborhood of q = 0 (more specifically in a neighborhood not
containing q1 = π

2) the vector fields {g1, g2, g3, g4, g5} are linearly inde-
pendent, thus establishing that the degree of nonholonomy is 3 and that
the growth vector is (2, 3, 5). The relative growth vector is (2, 1, 2).

4.3 Philip Hall basis

Let L(g1, . . . , gm) be the Lie algebra generated by a set of vector fields
g1, . . . , gm. One approach to equipping L(g1, . . . , gm) with a basis is to
list all the generators and all of their Lie products. The problem is that
not all Lie products are linearly independent because of skew-symmetry
and the Jacobi identity. The Philip Hall basis is a particular way to select
a basis which takes into account skew-symmetry and the Jacobi identity.

Given a set of generators {g1, · · · , gm}, we define the length of a Lie
product recursively as

l(gi) = 1 i = 1, · · · ,m
l([A,B]) = l(A) + l(B),

where A and B are themselves Lie products. Alternatively, l(A) is the
number of generators in the expansion for A. A Lie algebra is nilpotent
if there exists an integer k such that all Lie products of length greater
than k are zero. The integer k is called the order of nilpotency.

A Philip Hall basis is an ordered set of Lie products H = {Bi} satis-
fying:

1. gi ∈ H, i = 1, . . . ,m

2. If l(Bi) < l(Bj) then Bi < Bj

3. [Bi, Bj] ∈ H if and only if

(a) Bi, Bj ∈ H and Bi < Bj and

344

(b) either Bj = gk for some k or Bj = [Bl, Br] with Bl, Br ∈ H
and Bl ≤ Bi.

The proof that a Philip Hall basis is indeed a basis for the Lie algebra
generated by {g1, . . . , gm} is beyond the scope of this book and may be
found in [38] and [104]. A Philip Hall basis which is nilpotent of order
k can be constructed from a set of generators using this definition. The
simplest approach is to construct all possible Lie products with length
less than k and use the definition to eliminate elements which fail to
satisfy one of the properties. In practice, the basis can be built in such a
way that only condition 3 need be checked.

Example 7.12. Philip Hall basis of order 3
A basis for the nilpotent Lie algebra of order 3 generated by g1, g2, g3 is

g1 g2 g3
[g1, g2] [g2, g3] [g3, g1]
[g1, [g1, g2]] [g1, [g1, g3]] [g2, [g1, g2]] [g2, [g1, g3]]
[g2, [g2, g3]] [g3, [g1, g2]] [g3, [g1, g3]] [g3, [g2, g3]]

Note that [g1, [g2, g3]] does not appear since

[g1, [g2, g3]] + [g2, [g3, g1]] + [g3, [g1, g2]] = 0

by the Jacobi identity and the second two terms in the formula are already
present.

345

5 Summary

The following are the key concepts covered in this chapter:

1. Nonholonomic constraints are linear velocity constraints of the form

ωi(q)q̇ = 0 i = 1, . . . , k

which cannot be integrated to give constraints on the configuration
variables q alone. By choosing gj(q), j = 1, . . . , n − k =: m to be
a basis for the null space of the linear velocity constraints, we get
the associated control system

q̇ = g1(q)u1 + · · ·+ gm(q)um.

The problem of nonholonomic motion planning consists of finding
a trajectory q(·) : [0, T]→ Rn, given q(0) = q0 and q(T) = qf .

2. The Lie bracket between two vector fields f and g on Rn is a new
vector field [f, g] defined by

[f, g](q) =
∂g

∂q
f(q)− ∂f

∂q
g(q).

3. A distribution ∆ is a smooth assignment of a subspace of the tangent
space to each point q ∈ Rn. One important way of generating it is
as the span of a number of vector fields:

∆ = span{g1, . . . , gm}.

The distribution ∆ is said to be regular if the dimension of ∆q does
not vary with q. The distribution ∆ is said to be involutive if it
is closed under the Lie bracket, that is if for all f, g ∈ ∆, we have
[f, g] ∈ ∆.

4. A distribution ∆ of dimension k is said to be integrable if there
exist n− k independent functions whose differentials annihilate the
distribution. Frobenius’ theorem asserts that a regular distribution
is integrable if and only if it is involutive. A Pfaffian system or
codistribution Ω

Ω = span{ω1, . . . , ωk}
is completely nonholonomic if the involutive closure of the distribu-
tion ∆ = Ω⊥ spans Rn for all q.

5. Consider the system

q̇ = g1(q)u1 + · · ·+ gm(q)um.

346

The controllability Lie algebra is the Lie algebra generated by the
vector fields g1, . . . , gm. It is the smallest Lie algebra containing
g1, . . . , gm. Chow’s theorem asserts that if the controllability Lie
algebra is full rank, we can steer this system from any initial to any
final point.

6. Given a distribution ∆, the filtration associated with ∆ is defined
by ∆1 = ∆ and

∆i = ∆i−1 + [∆1,∆i−1],

where
[∆1,∆i−1] = span{[g, h] : g ∈ ∆1, h ∈ ∆i−1}.

The filtration is said to be regular if each of the ∆i are regular. For
a regular filtration, the smallest integer κ at which rank ∆κ is equal
to that of ∆κ+1,∆κ+2, . . . is called the degree of nonholonomy of
the distribution. The growth vector r ∈ Zκ for a regular filtration
is defined as ri := rank ∆i. The relative growth vector σ ∈ Zκ is
defined as σi = ri − ri−1 with r0 = 0.

7. Given ∆ = span{g1, . . . , gm}, a Lie product is any nested set of Lie
brackets of the generators gi. A Lie algebra generated by ∆ is said
to be nilpotent if there exists an integer k such that all Lie products
of length greater than k are zero. A Philip Hall basis is an ordered
set of Lie products chosen by a set of rules so as to keep track of the
restrictions imposed by the properties of the Lie bracket, namely
skew-symmetry and the Jacobi identity.

6 Bibliography

The topic of holonomy and nonholonomy of Pfaffian constraints has cap-
tured the attention of many of the earliest writers on classical mechan-
ics. A nice description of the mechanics point of view is given in [81].
Chapter 1 of Rosenberg [99] makes mention of the different kinds of con-
straints: holonomic, rheonomic, scleronomic. The examples in this chap-
ter are drawn from our interest in fingers rolling on the surface of an
object [60, 76], mobile robots and parking problems [78, 112], and space
robots [119, 32]. A recent collection of papers on nonholonomic motion
planning is [61].

Work on nonlinear controllability has a long history as well, with
recognition of the connections between Chow’s theorem and controlla-
bility in Hermann and Krener [40]. Good textbook presentations of the
work on nonlinear control are available in [43], and [83]. The theory of
nonholonomic distributions presented here was originally developed by
Vershik and Gershkovic [117]. The notation we follow is theirs and is
presented in [78].

347

A somewhat less obvious application of the methods of this chapter is
in the analysis of control algorithms for redundant manipulators. In this
application, one looks for an algorithm such that closed trajectories of the
end-effector generate closed paths in the joint space of the manipulator.
This is closely related to the integrability of a set of constraints. A good
description of this is in the work of Shamir and Yomdin [105], Baillieul
and Martin [5], Chiacchio and Siciliano [17], and De Luca and Oriolo [23].

348

7 Exercises

1. Show that the controllability rank condition is also a necessary con-
dition for local controllability under the usual smoothness and reg-
ularity assumptions.

2. Show that the differential constraint in R5 given by

[
0 1 ρ sin q5 ρ cos q3 cos q5

]
q̇ = 0

is nonholonomic.

3. Use the definition of the Lie bracket to prove the properties listed
in Proposition 7.1.

4. Consider the system Σ,

q̇ = g1(q)u1 + · · ·+ gm(q)um.

Let u : [0, T] → Rm be input which steers Σ from q0 to qf in T
units of time.

(a) Show that the input ũ : [0, 1]→ Rm defined by

ũ(t) = u(t/T)

steers σ from q0 to qf in 1 unit of time.

(b) Show that the input ū : [0, 1] −→ Rm defined by

ū(t) = −ũ(1− t)

steers σ from qf to q0 in 1 unit of time.

5. Spheres rolling on spheres
Derive the control equation for a unit sphere in rolling contact with
another sphere of radius ρ with the same inputs as in Example 7.6.
Show that the system is controllable if and only if ρ 6= 1.

6. Car with N trailers
The figure below shows a car with N trailers attached. We attach
the hitch of each trailer to the center of the rear axle of the previous
trailer. The wheels of the individual trailers are aligned with the
body of the trailer. The constraints are again based on allowing
the wheels only to roll and spin, but not slip. The dimension of the
state space is N + 4 with 2 controls.

349

θN

y

x

θ0

θ1

φ

l

Parameterize the configuration by the states of the automobile plus
the angle of each of the trailers with respect to the horizontal. Show
that the control equation for the system has the form

ẋ = cos θ0 u1

ẏ = sin θ0 u1

φ̇ = u2

θ̇0 =
1

l
tanφu1

θ̇i =
1

di




i−1∏

j=1

cos(θj−1 − θj)



 sin(θi−1 − θi)u1.

7. Firetruck
A firetruck can be modeled as a car with one trailer, with the dif-
ference that the trailer is steerable, as shown in the figure below.

θ0

x

y

l

θ1

φ1

φ0

The constraints on the system are similar to that of the car in
Section 3, with the difference that back wheels are steerable. Derive
the nonlinear control system for a firetruck corresponding to the
control inputs for driving the cab and steering both the cab and
the trailer, and show that it represents a controllable system.

350

8. Prove that a 1-dimensional distribution ∆q = span{f(q)} is invo-
lutive. More specifically, show that for any two smooth functions α
and β

[αf, βf] ∈ ∆.

9. Prove that the two definitions of Lie bracket given in this chapter,
namely,

[f, g] =
∂g

∂q
f − ∂f

∂q
g,

and

L[f,g]α = Lf (Lgα)− Lg(Lfα) ∀α : Rn → R,

are equivalent.

10. Use induction and Jacobi’s identity to prove that

[∆i,∆j] ⊂ [∆1,∆i+j−1] ⊂ ∆i+j ,

where ∆ = ∆1 ⊂ ∆2 ⊂ · · · is a filtration associated with a distri-
bution △.

11. Let ∆i, i = 1, . . . , κ be a regular filtration associated with a distri-
bution. Show that if rank(∆i+1) = rank(∆i) then ∆i is involutive.
(Hint: use Exercise 10).

12. Satellite with 2 rotors
Figure 7.9 shows a model of a satellite body with two symmetrically
attached rotors, where the rotors’ axes of rotation intersect at a
point. The constraint on the system is conservation of angular
momentum.

(a) Assuming that the initial angular momentum of the system is
zero, show that the (body) angular velocity, ω1, of the satellite
body is related to the rotor velocities (u1, u2) by

ω1 = b1u1 + b2u2 (7.21)

where b1, b2 ∈ R3 are constant vectors.

Equation (7.21) gives rise to a differential equation in the ro-
tation group SO(3) for the satellite body

Ṙ(t) = R(t)(̂b1u1 + b̂2u2). (7.22)

(b) Obtain a local coordinate description of (7.22) using the Eu-
ler parameters of SO(3) (from Chapter 2) and show that the
resulting system is controllable.

351

rotor

Inertia frame

frame
body

rotor

Figure 7.9: A model of a satellite body with two rotors. The satellite
can be repositioned by controlling the rotor velocities. (Figure courtesy
of Greg Walsh)

13. The figure below shows a simplified model of a falling cat. It consists
of two pendulums coupled by a spherical joint. The configuration
space of the system is Q = S2 × S2, where S2 is the unit sphere in
R3.

m
m

d
d

(a) Derive the Pfaffian constraints arising from conservation of an-
gular momentum and dualize the results to obtain the control
system for nonholonomic motion planning.

(b) Is the system in part (a) controllable?

14. Write a computer program to write a Philip Hall basis of given order
for a set of m generators g1, . . . , gm. Use your program to generate
a Philip Hall basis of order 5 for a system with 2 generators.

352

15. Consider the system of Exercise 6. Write a computer program (or
use Mathematica or any other symbolic manipulation software pack-
ages) to compute the filtration associated with the system. Show
that the system is controllable, with degree of nonholonomy N + 2
and relative growth vector (2, 1, . . . , 1).

16. In this chapter, we restricted ourselves to constraints of the form

ωi(q)q̇ = 0 i = 1, . . . , k.

Consider what would happen if the constraints were of the form

ωi(q)q̇ = ci i = 1, . . . , k

for constants ci. Dualize these constraints to get an associated
control system of the form

q̇ = f(q) +

n−k∑

i=1

gi(q)ui.

What is the formula for f(q)? Apply this method to the space
robot with nonzero angular momentum. What difficulties would
one encounter in path planning for these examples? These systems
are called systems with drift.

17. (Hard) Show that for a regular system the growth vector is bounded
above by

σi =
1

i



(σ1)
i −

∑

j|i, j<i
jσj



 i > 1,

where σi is the maximum relative growth at the ith stage and j|i
means all integers j such that j divides i. If σi = σi for all i, we
say that the system has maximum growth.

353

354

Chapter 8

Nonholonomic Motion

Planning

This chapter provides a survey of some of the techniques which have
been used in planning paths for nonholonomic systems. This is an area
of active research; here, we only provide an introduction to some of the
recent techniques that may be applied. In addition to planning paths
satisfying the constraints of the form of

ωi(q)q̇ = 0 i = 1, . . . , k,

one frequently has to make sure that the trajectory q(·) does not intersect
obstacles (which are modeled as infeasible regions in the state space). For
example, in the case of fingers rolling on the surface of a grasped object,
obstacle avoidance may consist of keeping the fingers from colliding with
each other or with the grasped object. Conventional (holonomic) path
planners implicitly assume that arbitrary motion in the configuration
space is allowed as long as obstacles are avoided. If a system contains
nonholonomic constraints, many of these path planners cannot be directly
applied since they generate paths which violate the constraints. For this
reason, it is important to understand how to efficiently compute paths
for nonholonomic systems.

1 Introduction

In this section, we introduce the reader to some of the general approaches
to nonholonomic motion planning and give an outline of the chapter.

355

Optimal control

Perhaps the most well-formulated method for finding trajectories of a
general control system is the use of optimal control. By attaching a
cost functional to each trajectory, we can limit our search to trajectories
which minimize a cost function. Typical cost functions might be the
length of the path (in some appropriate metric), the control cost, or the
time required to execute the trajectory.

If the system has bounds on the magnitudes of the inputs, it makes
sense to solve the motion planning problem in minimum time. It is well
known that for many problems, when the set of allowable inputs is con-
vex, then the time-optimal paths consist of saturating the inputs at all
times (this is often referred to as bang-bang control). The inputs may
change between one set of values and another at a possibly infinite num-
ber of switching times. Choosing an optimal trajectory is then equivalent
to choosing the switching times and the values of the inputs between
switching times.

Piecewise constant inputs

Related to the bang-bang trajectories of optimal control, it is also possible
to steer nonholonomic systems using piecewise constant inputs. Perhaps
the most naive way of using constant inputs is to pick a time interval and
generate a graph by applying all possible sequences of inputs (discretized
to finitely many values). Each node on the graph corresponds to a con-
figuration, and branches indicate the choice of a fixed control over the
time interval. The size of the graph grows as md, where m is the number
of input combinations considered at each step and d is the number of
steps. Since we do not know how long to search, the amount of computer
memory required by such an algorithm can be very large. Also, we are
likely not to hit our goal exactly, so some post-processing must be done
if exact maneuvering is needed.

Recently, a very elegant and general motion planning method us-
ing piecewise constant inputs has also been developed by Lafferriere and
Sussmann [54]. They consider the case of a nilpotent system. Recall
from Chapter 7 that a distribution ∆ spanned by g1, . . . , gm is nilpotent
of order k if all the Lie products with more than k terms vanish. The
advantage of nilpotent Lie distributions is that certain computations are
greatly simplified, as we shall see in Section 3. The main tool in their
method is the Baker-Campbell-Hausdorff formula. If the system is not
nilpotent, it can be shown that if the initial and final points are close,
then the algorithm of Lafferriere and Sussmann moves the original sys-
tem closer to the goal by at least half. By breaking the path up into
small pieces, we can move arbitrarily close to the goal with repeated
applications of the algorithm.

356

Canonical paths

A third approach to solving the nonholonomic path planning problem
is by choosing a family of paths which can be used to produce desired
motions. For example, we might consider paths for a car that cause a
net rotation of any angle, or a translation in the direction that the car
is facing. We can then move to any configuration by reorienting the car,
driving forward, and again reorienting the car. The path used to cause
a net rotation might consist of a set of parameterized piecewise constant
inputs or a heuristic trajectory. The set of canonical paths used for a
given problem is usually specific to that problem. In some cases the
paths may be derived from some unifying principle. For example, if we
could solve the optimal control problem in closed form, these optimal
paths would form a set of canonical paths. In the case of time-optimal
control, we might consider paths corresponding to saturated inputs as
canonical paths, but since it is not clear how to combine these paths to
get a specific motion, we distinguish these lower level paths from canonical
paths. Canonical paths have been used by Li and Canny to study the
motion of a spherical fingertip on an object [60]. This method is discussed
in Section 4.

Outline of the chapter

In remainder of this chapter, we will give a bit more detail about some of
the various methods of nonholonomic motion planning being pursued in
the literature. The sections are not organized according to the different
approaches, but from a pedagogical point of view. In Section 2, we study
the steering of “model” versions of our nonholonomic system,

q̇ = g1(q)u1 + · · ·+ gm(q)um. (8.1)

By model systems we mean those which are in some sense canonical. We
use some results from optimal control to explicitly generate optimal in-
puts for a class of systems. The class of systems which we consider, called
first-order control systems, have sinusoids as optimal steering inputs. Mo-
tivated by this observation, we explore the use of sinusoidal input signals
for steering second- and higher-order model control systems. This study
takes us forward to a very important model class which we refer to as
chained form systems.

In Section 3, we begin by applying the use of sinusoidal inputs to
steering systems which are not in a model form. We do so by using
some elementary Fourier analysis in some cases of systems that resemble
chained form systems. The question of when a given system can be
converted into a chained form system is touched upon as well. Then, we
move on to the use of approximations of the optimal input class by the

357

Ritz approximation technique. Finally, we discuss the use of piecewise
constant inputs to solve the general motion planning problem.

In Section 4, we apply the theory developed so far along with some ge-
ometric reasoning techniques involving “canonical trajectories” to study
repositioning fingers on the surface of a grasped object.

2 Steering Model Control Systems Using Si-

nusoids

In this section, we study techniques for steering certain “model” control
systems: that is, systems which are, in a certain sense, canonical. These
systems appear to be superficially unrelated to the examples that we
discussed in Chapter 7, but they are in fact quite relevant, as we shall see
shortly. The use of sinusoids at integrally related frequencies is motivated
by the results of Brockett in the context of optimally steering a class of
systems. This section begins with a review of his results for a class
of systems whose degree of nonholonomy is two and growth vector is
(m,m(m+1)/2). The technique is then extended to certain other classes
of model control systems with specific attention being paid to a class of
systems referred to as the so-called “chained form” systems. Techniques
for steering using methods other than sinusoids and systems other than
the model systems considered in this section are deferred to Section 3.

2.1 First-order controllable systems: Brockett’s sys-

tem

By a first-order controllable system, we mean a control system of the form

q̇ = g1(q)u1 + · · ·+ gm(q)um,

where the vector fields gi(q), i = 1, . . . ,m and their first-order Lie brackets
[gj , gk], j < k, k = 1, . . . ,m are linearly independent and furthermore, we
have that

TqR
n = span{gi, [gj , gk] : i, j, k = 1, . . . ,m}.

In particular, this implies that n = m +m(m − 1)/2 = m(m + 1)/2. A
very important class of model control systems which satisfy this condition
was proposed by Brockett [11]. We begin with a discussion of this class
for the case that m = 2 and n = m(m+ 1)/2 = 3,

q̇1 = u1

q̇2 = u2

q̇3 = q1u2 − q2u1.

(8.2)

358

For this system,

g1 =




1
0
−q2



 g2 =




0
1
q1



 [g1, g2] =




0
0
2



 .

Thus the system is maximally nonholonomic with degree of nonholonomy
2 and growth vector (2, 3). We will consider the problem of steering
system (8.2) from q0 ∈ R3 at t = 0 to qf ∈ R3 at t = 1. In fact, we will
do so as to minimize the least squares control cost given by

∫ 1

0

‖u‖2 dt.

Using the fact that q̇i = ui for i = 1, 2, an equivalent description of
the last equation in (8.2) is as a constraint of the form

q̇3 = q1q̇2 − q2q̇1.
Similarly, the Lagrangian to be minimized can be written as q̇21+q̇22 . Using
a Lagrange multiplier λ(t) for the constraint, we augment the Lagrangian
to be minimized as follows:

L(q, q̇) = (q̇21 + q̇22) + λ(q̇3 − q1q̇2 + q2q̇1).

The method for minimizing this constrained Lagrangian is to use the
classical calculus of variations for the Lagrangian L(q, q̇) above, with the
control system written as a constraint with a Lagrange multiplier (the
reader wishing to learn more about optimal control may consult one of
several nice books on the subject, such as [123]). There it is shown that
stationary solutions satisfy the Euler-Lagrange equations. The Lagrange
multiplier λ(t) is determined using the form of the constraint. The fact
that the equations are precisely the Euler-Lagrange equations of dynamics
should come as no surprise when one considers that the dynamical equa-
tions may be derived from a least-action principle. The Euler-Lagrange
equations for minimizing the Lagrangian of our optimal control problem
are

d

dt

(
∂L(q, q̇)

∂q̇i

)
− ∂L(q, q̇)

∂qi
= 0,

or equivalently,
q̈1 + λq̇2 = 0

q̈2 − λq̇1 = 0

λ̇ = 0.

(8.3)

Equation (8.3) establishes that λ(t) is constant and, in fact, that the
optimal inputs satisfy the equations:

[
u̇1

u̇2

]
=

[
0 −λ
λ 0

] [
u1

u2

]
:= Λ

[
u1

u2

]
.

359

Note that the matrix Λ is skew-symmetric with λ constant, so that the
optimal inputs are sinusoids at frequency λ; thus,

[
u1(t)
u2(t)

]
=

[
cosλt − sinλt
sinλt cosλt

] [
u1(0)
u2(0)

]
:= eΛtu(0).

Having established this functional form of the optimal controls, given
values for q0 and qf one can solve for the u(0) and λ required to steer the
system optimally. However, from the form of the control system (8.2),
it is clear that the states q1 and q2 may be steered directly. Thus, it is
of greatest interest to steer from q(0) = (0, 0, 0) to q(1) = (0, 0, a). By
directly integrating for q1 and q2 we have that

[
q1(t)
q2(t)

]
= (eΛt − I)Λ−1u(0).

Since q1(1) = q2(1) = 0, it follows that eΛ = I so that λ = 2nπ, n =
0,±1,±2, Integrating q̇3 yields

q3(1) =

∫ 1

0

(q1u2 − q2u1) dt = − 1

λ

(
u2

1(0) + u2
2(0)

)
= a.

Further, the total cost is
∫ 1

0

‖u‖2 dt = ‖u(0)‖2 = −λa.

Since λ = 2nπ, it follows that the minimum cost is achieved for n =
−1 and that ‖u(0)‖2 = 2πa. However, apart from its magnitude, the
direction of u(0) ∈ R2 is arbitrary. Thus, the optimal input steering
the system between the points (0, 0, 0) and (0, 0, a) is a sum of sines and
cosines at a frequency 2π (more generally 2π

T if the time period of the
steering is T).

The generalization of the system (8.2) to an m-input system is the
system

q̇i = ui i = 1, . . . ,m

q̇ij = qiuj − qjui i < j = 1, . . . ,m.
(8.4)

A slightly more pleasing form of this equation is obtained by forming a
skew-symmetric matrix Y ∈ so(m) with the −qij as the bottom lower
half (below the diagonal) to give a control system in Rm × so(m):

q̇ = u

Ẏ = quT − uqT .
(8.5)

The Euler-Lagrange equations for this system are an extension of those
for the two input case, namely:

q̈ − Λq̇ = 0

Λ̇ = 0,

360

where Λ ∈ so(m) is the skew-symmetric matrix of Lagrange multipliers
associated with Y . As before, Λ is constant and the optimal input satisfies

u̇ = Λu,

so that
u(t) = eΛtu(0).

It follows that eΛt ∈ SO(m). It is of special interest to determine the
nature of the input when q(0) = q(1) = 0, Y (0) = 0, and Y (1) is a given
matrix in so(m). In this context, an amazing fact that has been shown
by Brockett [11] is that when m is even and Y is non-singular, the input
has m/2 sinusoids at frequencies

2π, 2 · 2π, . . . ,m/2 · 2π.

If m is odd, then Y is of necessity singular, but if it is of rank m − 1,
then the input has (m− 1)/2 sinusoids at frequencies

2π, 2 · 2π, . . . , (m− 1)/2 · 2π.

While the proof of this fact is somewhat involved and would take us
afield from what we would like to highlight in this section, we may use
the fact to propose the following algorithm for steering systems of the
form of (8.4):

Algorithm 1. Steering first-order canonical systems

1. Steer the qi to their desired values using any input and ignoring the
evolution of the qij .

2. Using sinusoids at integrally related frequencies, find u0 such that
the input steers the qij to their desired values. By the choice of
input, the qi are unchanged.

The algorithm involves steering the states step by step. The states
that are directly controlled (zeroth order) are steered first and then the
first Lie bracket directions are steered.

2.2 Second-order controllable systems

Consider systems in which the first level of Lie bracketing is not enough
to span TqR

n. We begin by trying to extend the previous canonical form
to the next higher level of bracketing:

q̇i = ui i = 1, . . . ,m

q̇ij = qiuj 1 ≤ i < j ≤ m
q̇ijk = qijuk 1 ≤ i, j, k ≤ m (mod Jacobi identity).

(8.6)

361

Because the Jacobi identity imposes relationships between Lie brackets
of the form

[gi, [gj , gk]] + [gk, [gi, gj]] + [gj , [gk, gi]] = 0

for all i, j, k, it follows that not all state variables of the form of qijk are
controllable. For this reason, we refer to the last of the preceding equa-
tions as “mod Jacobi identity”. Indeed, a straightforward but somewhat
laborious computation shows that

q231 − q132 = q1q23 − q2q13.

From Exercise 17 of Chapter 7, it may be verified that the maximum
number of controllable qijk is

(m+ 1)m(m− 1)

3
.

Constructing the Lagrangian with the same integral cost criterion as be-
fore and deriving the Euler-Lagrange equations does not, in general, result
in a constant set of Lagrange multipliers. For the case of m = 2, Brock-
ett and Dai [14] have shown that the optimal inputs are elliptic functions
(see also the next section). However, we can extend Algorithm 1 to this
case as follows:

Algorithm 2. Steering second-order model systems

1. Steer the qi to their desired values. This causes drift in all the other
states.

2. Steer the qij to their desired values using integrally related sinu-
soidal inputs. If the ith input has frequency ωi, then qij will have
frequency components at ωi±ωj . By choosing inputs such that we
get frequency components at zero, we can generate net motion in
the desired states.

3. Use sinusoidal inputs a second time to move all the previously
steered states in a closed loop and generate net motion only in
the qijk direction. This requires careful selection of the input fre-
quencies such that ωi±ωj 6= 0 but ωi +ωj +ωk has zero frequency
components.

The required calculations for Step 2 above are identical to those in
Algorithm 1. A general calculation of the motion in Step 3 is quite
cumbersome, although for specific systems of practical interest the calcu-
lations are quite straightforward. For example, if m = 2 equation (8.6)

362

becomes

q̇1 = u1

q̇2 = u2

q̇12 = q1u2

q̇121 = q12u1

q̇122 = q12u2.

To steer q1, q2, and q12 to their desired locations, we apply Algorithm 1.
To steer q121 independently of the other states, choose u1 = a sin 2πt,
u2 = b cos 4πt to obtain

q121(1) = q121(0)− a2b

16π2
.

Similarly, choosing u1 = b cos 4πt, u2 = a sin 2πt gives

q122(1) = q122(0) +
a2b

32π2

and all the other states return to their original values.

Both the algorithms presented above require separate steps to steer
in each of the qijk directions. It is also possible to generate net motion
in multiple coordinates simultaneously by using a linear combination of
sinusoids and by solving a polynomial equation for the necessary coeffi-
cients (see Exercise 4).

2.3 Higher-order systems: chained form systems

We now study more general examples of nonholonomic systems and inves-
tigate the use of sinusoids for steering such systems. As in the previous
section, we may try to generate canonical classes of higher order systems,
i.e., systems where more than one level of Lie brackets is needed to span
the tangent space to the configuration space. Such a development is given
by Grayson and Grossmann [37], and in [78] we showed that, in full gen-
erality, it is difficult to use sinusoids to steer such systems. This leads
us to specialize to a smaller class of higher order systems, which we refer
to as chained systems, that can be steered using sinusoids at integrally
related frequencies. These systems are interesting in their own right as
well, since they are duals of a classical construction in the literature on
differential forms referred to as the Goursat normal form. Further, we
can convert many other nonlinear systems into chained form systems as
we discuss in the next section.

363

Consider a two-input system of the following form:

q̇1 = u1

q̇2 = u2

q̇3 = q2u1

q̇4 = q3u1

...

q̇n = qn−1u1.

(8.7)

In vector field form, equation (8.7) becomes

q̇ = g1u1 + g2u2

with

g1 =





1
0
q2
q3
...

qn−1





g2 =





0
1
0
0
...
0





. (8.8)

We define the system (8.7) as a one-chain system. The first item is to
check the controllability of these systems. To this end, denote iterated
Lie products as adkg1g2, defined by:

adg1g2 = [g1, g2], adkg1g2 = [g1, adk−1
g1 g2] = [g1, [g1, . . . , [g1, g2] . . .]]

Lemma 8.1. Lie bracket calculations
For the vector fields in equation (8.8), with k ≥ 1

adkg1g2 =





0
...

(−1)k

...
0




.

(Here the only non-zero entry is in the (k+2)th entry.)

Proof. By induction. Since the first level of brackets is irregular, we begin

364

by expanding [g1, g2] and [g1, [g1, g2]] to get

[g1, g2] =





0
0
−1
0
0
...
0





[g1, [g1, g2]] =





0
0
0
1
0
...
0





.

Now assume that the formula is true for k. Then

adk+1
g1 g2 = [g1, adkg1g2] =





0
...
0

(−1)k+1

0
...
0





.

Proposition 8.2. Controllability of the one-chain system
The one-chain system (8.7) is completely nonholonomic (controllable).

Proof. There are n coordinates in (8.7) and the n Lie products

{g1, g2, adig1g2} 1 ≤ i ≤ n− 2

are independent using Lemma 8.1.

To steer this system, we use sinusoids at integrally related frequencies.
Roughly speaking, if we use u1 = sin 2πt and u2 = cos 2πkt then q̇3 will
have components at frequency 2π(k − 1), q̇4 at frequency 2π(k − 2), etc.
q̇k+2 will have a component at frequency zero and when integrated gives
motion in qk+2 while all previous variables return to their starting values.

Algorithm 3. Steering chained form systems

1. Steer q1 and q2 to their desired values.

2. For each qk+2, k ≥ 1, steer qk to its final value using u1 = a sin 2πt,
u2 = b cos 2πkt, where a and b satisfy

qk+2(1)− qk+2(0) =
(a

4π

)k b

k!
.

365

Proposition 8.3. Chained form algorithm
Algorithm 3 can steer (8.7) to an arbitrary configuration.

Proof. The proof is constructive. We first show that using u1 = a sin 2πt,
u2 = b cos 2πkt produces motion only in qk+2 and not in qj , j < k+2 after
one period, by direct integration. If qk−1 has terms at frequency 2πni,
then qk has corresponding terms at 2π(ni±1) (by expanding products of
sinusoids as sums of sinusoids). Since the only way to have qi(1) 6= qi(0)
is to have qi have a component at frequency zero, it suffices to keep
track only of the lowest frequency component in each variable; higher
components will integrate to zero. Direct computation starting from the
origin yields

q1 =
a

2π
(1− cos 2πt),

q2 =
b

2πk
sin 2πkt

q3 =

∫
ab

2πk
sin 2πkt sin 2πt dt

=
1

2

ab

2πk

(
sin 2π(k − 1)t

2π(k − 1)
− sin 2π(k + 1)t

2π(k + 1)

)

q4 =
1

2

a2b

2πk · 2π(k − 1)

∫
sin 2π(k − 1)t · sin 2πt dt+ · · ·

=
1

22

a2b

2πk · 2π(k − 1) · 2π(k − 2)
sin 2π(k − 2)t+ · · ·

...

qk+2 =

∫
1

2k−1

akb

2πk · 2π(k − 1) · · · 2π sin2 2πt dt+ · · ·

=
1

2k−1

akb

(2π)kk!

t

2
+ · · ·

It follows that qk+2(1) = qk+2(0)+
(
a
4π

)k b
k! and all earlier qi’s are periodic

and hence qi(1) = qi(0), i < k. If the system does not start at the origin,
the initial conditions generate extra terms of the form qi−1(0)u1 in the
ith derivative and this integrates to zero, giving no net contribution.

For the case of systems with more than two inputs, and to the so-called
multi-chained form systems, we refer the reader to [78].

3 General Methods for Steering

Model control systems of the kind that we discussed in the previous sec-
tion will very seldom show up verbatim in applications. In this section,

366

we consider some techniques in motion planning for more general non-
holonomic systems.

3.1 Fourier techniques

The methods involving sinusoids at integrally related frequencies can be
modified using some elementary Fourier analysis to steer systems which
are not in any of the model classes that we have discussed. We will
illustrate these notions on two examples that we studied in Chapter 7.

Example 8.1. Steering the hopping robot in flight
We saw in Chapter 7 that ψ was the angle of the hip of the hopping robot
in the flight phase, l the length of the leg extension, and θ the angle of
the body of the robot. The control equations are given by

ψ̇ = u1

l̇ = u2

θ̇ = − m(l + d)2

I +m(l + d)2
u1.

(8.9)

Expanding the right-hand side of the last equation of (8.9) in a Taylor
series about l = 0, we get

θ̇ = − md2

md2 + I
ψ̇ − 2mdI

(md2 + I)2
lu1 +O(l2)u1

where O(l2) stands for quadratic and higher-order terms in l. This sug-

gests a change of coordinates of the form α = θ + md2

md2+Iψ to put the
equations in the form

ψ̇ = u1

l̇ = u2

α̇ = − 2mdI

(md2 + I)2
lu1 +O(l2)u1 := f(l)u1.

If one neglects the higher order terms in the last equation, this equation
has the form of a chained form system with 3 states. Using this as
justification, we attempt to use the algorithm for steering chained form
systems to steer the precise form of this system. We first steer the ψ and
l variables to their desired values. Then, we use sinusoids

u1 = a1 sin 2πt

u2 = a2 cos 2πt

to steer α. By choice, after one period (1 second), the last motion does
not affect the final values of ψ and l. Since l = a2

2π sin 2πt over this piece

367

of the motion, we can expand f(l) by its Fourier series as

f(
a2

2π
sin 2πt) = β1 sin 2πt+ β2 sin 4πt+ · · ·

Integrating α̇ over one period and noting that only the first term con-
tributes to the net motion, yields

α(1)− α(0) =

∫ 1

0

(a1β1 sin2 2πt+ a1β2 sin 2πt sin 4πt+ · · ·) dt

=
1

2
a1β1.

Since β1 is a function of a2, one can solve for a1, a2 numerically to achieve
a net change in α. Cartwheeling in mid-air consists of a net change in
phase of 2π radians.

Example 8.2. Steering the kinematic car
The equations for the kinematic model of a front wheel drive car are given
by (7.14), namely

ẋ = cos θ u1

ẏ = sin θ u1

θ̇ =
1

l
tanφ u1

φ̇ = u2.

In this form, u1 does not control any state directly. We use a change of
coordinates z1 = x, z2 = φ, z3 = sin θ, z4 = y, and a change of inputs
v1 = cos θ u1, v2 = u2 to put the equations in the form

ż1 = v1

ż2 = v2

ż3 =
1

l
tan z2v1

ż4 =
z3√

1− z2
3

v1.

As in the previous example, the linear terms in the Taylor series expan-
sions of the nonlinearities in the last two equations match the terms of
the one-chain system, and we can include the effect of the nonlinear terms
using Fourier analysis.

An example of the application of Algorithm 2 applied to the car is
given in Figure 8.1. The first part of the path, labeled A, drives x and φ
to their desired values using a constant input. The second portion labeled
B, uses a sine and cosine to drive θ while bringing the other two states
back to their desired values. The last step labeled C, involving the inputs

u1 = a1 sin 4πt u2 = a2 sin 2πt,

368

-6 -4 -2 0 2 4 6

-0.4

-0.2

0.0

0.2

0.4

0.6

x

Phi

-6 -4 -2 0 2 4 6

-0.3

-0.2

-0.1

-0.0

0.1

0.2

0.3

x

Theta

-6 -4 -2 0 2 4 6

0.0

0.5

1.0

1.5

2.0

x

y

0 1 2 3

-4

6

time

u1

-0.6

0.6

u2

A

B

C

B C

A

B

C

A B C

A

Figure 8.1: Sample trajectories for the motion of a car. The trajec-
tory shown is a sample path which moves the car from (x, y, θ, φ) =
(−5, 1, 0.05, 1) to (0, 0.5, 0, 0). The first three figures show the states ver-
sus x, the bottom right graphs show the inputs as functions of time.

brings y to the desired value and returns the other states back to their
correct values. The Lissajous figures obtained from the phase portraits of
the different variables are quite instructive. Consider the part of the curve
labeled C. The upper left plot contains the Lissajous figure for x, φ (two
loops); the lower left plot is the corresponding figure for x, θ (one loop);
and the open curve in x, y shows the increment in the y variable. The
interesting implication here is that the Lie bracket motions correspond
to rectification of harmonic periodic motions of the driving vector fields,
and the harmonic relations are determined by the order of the Lie bracket
corresponding to the desired direction of motion.

3.2 Conversion to chained form

An interesting question to ask is whether it is possible using a change of
input and nonlinear transformation of the coordinates to convert a given
nonholonomic control system into one of the model forms discussed in

369

the previous section. More precisely, given the system

q̇ = g1(q)u1 + · · ·+ gm(q)um,

does there exist a matrix β(q) ∈ Rm×m and a diffeomorphism φ : Rn →
Rn such that with

v = β(q)u z = φ(q),

the system is in chained form in the z coordinates with inputs v? One
can give necessary and sufficient conditions to solve this problem (see
[74]), but the discussion of these conditions would take us into far too
much detail for this section. In [78], we gave sufficient conditions for the
two-input case, in which case the system was to be converted into the one-
chain form. The conditions assume that g1, g2 are linearly independent.
Now, the system can be converted into one-chain form if the following
distributions are all of constant rank and involutive:

∆0 = span{g1, g2, adg1 g2, . . . , adn−2
g1 g1}

∆1 = span{g2, adg1 g2, . . . , adn−2
g1 g2}

∆2 = span{g2, adg1 g2, . . . , adn−3
g1 g2}

and there exists a function h1(q) such that

dh1 ·∆1 = 0 and dh1 · g1 = 1.

If these conditions are met, then a function h2 independent of h1 may be
chosen so that

dh2 ·∆2 = 0.

The existence of independent h1 and h2 so that dh1 ·∆1 = 0, dh2 ·∆2 = 0
is guaranteed by Frobenius’ theorem, since ∆2 ⊂ ∆1 are both involutive
distributions. There is however an added condition on h1, namely that
dh1 ·g1 = 1. If we can find these functions h1, h2, then the map φ : q 7→ z
and input transformation given by

z1 = h1 v1 := u1

z2 = Ln−2
g1 h2 v2 := (Ln−1

g1 h2)u1 + (Lg2L
n−2
g1 h2)u2

...

zn−1 = Lg1h2

zn = h2

yields
ż1 = v1

ż2 = v2

ż3 = z2v1

...

żn = zn−1v1.

370

This procedure can be illustrated on the kinematic model of a car.

Example 8.3. Conversion of the kinematic car into chained form
First, we rewrite the kinematic equations as

ẋ = u1

ẏ = tan θ u1

θ̇ =
1

l
tanφ u1

φ̇ = u2.

Then, with h1 = x and h2 = y, it is easy to verify that this system
satisfies the conditions given above and the change of variables and input
are given by

z1 = x u1 = v1

z2 =
1

l
sec2 θ tanφ u2 = −2

l
sin2 φ tan θv1 + l cos2 θ cos2 φv2

z3 = tan θ

z4 = y

to give a one-chain system.

3.3 Optimal steering of nonholonomic systems

In this section, we discuss the least squares optimal control problem for
steering a control system of the form

q̇ = g1(q)u1 + · · ·+ gm(q)um

from q0 to qf in 1 second. Thus, we minimize the cost function

1

2

∫ 1

0

‖u(t)‖2 dt.

Our treatment here is, of necessity, somewhat informal; to get all the
smoothness hypotheses worked out would be far too large an excursion
to make here. We will assume that the steering problem has a solution
(by Chow’s theorem, this is guaranteed when the controllability Lie al-
gebra generated by g1, . . . , gm is of rank n for all q). We give a heuristic
derivation from the calculus of variations of the necessary conditions for
optimality. To do so, we incorporate the constraints into the cost function
using a Lagrange multiplier function p(t) ∈ Rn to get

J(q, p, u) =

∫ 1

0

{
1

2
uT (t)u(t)− pT (q̇ −

m∑

i=1

gi(q)ui)

}
dt. (8.10)

371

Introduce the Hamiltonian function:

H(q, p, u) =
1

2
uTu+ pT

m∑

i=1

gi(q)ui. (8.11)

Using this definition and integrating the second term of (8.10) by parts
yields

J(q, p, u) = −pT (t)q(t)
∣∣∣
1

0
+

∫ 1

0

(H(q, p, u) + ṗT q) dt.

Consider the variation in J caused by variations in the control input u,1

δJ = −pT (t)δq(t)
∣∣∣
1

0
+

∫ 1

0

(
∂H

∂q
δq +

∂H

∂u
δu+ ṗT δq

)
dt.

If the optimal input has been found, a necessary condition for stationarity
is that the first variation above be zero for all variations δu and δq:

ṗ = −∂H
∂q

∂H

∂u
= 0. (8.12)

From the second of these equations, it follows that the optimal inputs are
given by

ui = −pT gi(q), i = 1, . . . ,m. (8.13)

Using (8.13) in (8.11) yields the optimal Hamiltonian

H∗(q, p) = −1

2

m∑

i=1

(
pT gi(q)

)2
. (8.14)

Thus, the optimal control system satisfies Hamilton’s equations:

q̇ =
∂H∗

∂p
(q, p)

ṗ = −∂H
∗

∂q
(q, p)

(8.15)

with boundary conditions q(0) = q0 and q(1) = qf . Using this result, we
may derive the following proposition about the structure of the optimal
controls:

Proposition 8.4. Constant norm of optimal controls
For the least squares optimal control problem for the control system

q̇ =

m∑

i=1

gi(q)ui

1In the calculus of variations, one makes a variation in u, namely δu, and calculates
the changes in the quantities p and H as δp and δH. See for example [123].

372

which satisfies the controllability rank condition, the norm of the optimal
input is constant, that is,

‖u(t)‖2 = ‖u(0)‖2 ∀t ∈ [0, 1].

Proof. The formula for the optimal input is given in (8.13). Differentiat-
ing it yields

u̇i = −ṗT gi(q)− pT
∂gi
∂q

q̇.

Further, using the Hamiltonian equation for ṗk given by

ṗk = −
m∑

i=1

pT
∂gi
∂qk

ui,

it may be verified that the formula for u̇i is given by

u̇i =

m∑

j=1

pT [gi, gj]uj .

Collecting these in a matrix gives

u̇ = Ω(q, p)u (8.16)

where Ω(q, p) is a skew-symmetric matrix (i.e., it is in so(m)) given by

Ω(q, p) =





0 pT [g1, g2] · · · pT [g1, gm]
−pT [g1, g2] 0 · · · pT [g2, gm]

...
...

...
−pT [g1, gm] −pT [g2, gm] · · · 0




.

The solution of the linear time-varying equation (8.16) is of the form

u(t) = U(t)u(0) (8.17)

for some U(t) ∈ SO(m) (see Exercise 6). From this fact the statement of
the proposition follows.

This proposition provides an interesting formula (8.16) for the deriva-
tives of the optimal input and establishes that the norm of the optimal
input is constant. This fact can be used to establish that the same optimal
input also solves other optimization problems which involve a monotone
transformation of the integrand, such as

∫ 1

0

√
uTu dt,

as well as some minimum-time problems (see Exercise 8). This proposi-
tion can be used to solve certain optimization problems, such as that for
the so-called Engel’s system:

373

Example 8.4. Optimal inputs for Engel’s system
This system is of the form

q̇1 = u1

q̇2 = u2

q̇3 = q1u2 − q2u1

q̇4 = q21u2.

This system has growth vector (2, 3, 4). It may be verified that

[g1, g2] =





0
0
2

2q1





so that the optimal inputs satisfy the differential equation obtained by
specializing (8.16), namely

u̇1 = 2(p3 + q1p4)u2

u̇2 = −2(p3 + q1p4)u1.
(8.18)

The solution of this equation is of the form

u1(t) = r sinα(t)

u2(t) = r cosα(t),

where r2 = u2
1(0) + u2

2(0). Further, since the optimal Hamiltonian given
by

H∗(q, p) = −1

2
(p1 − q2p3)

2 − 1

2
(p2 + q1p3 + q21p4)

2

is independent of q3 and q4, it follows that ṗ3 = ṗ4 = 0 so that p3 and p4

are constant. Using the functional form of u1 and u2 in (8.18) we get

α̈ = 2p4r sinα.

To integrate this equation, multiply both sides by 2α̇, integrate and define
δ = 2p4r to get

(α̇)2 = b− 2δ cosα,

where b is a constant of the integration. If b− 2|δ| > 0, this equation can
be written as

α̇ = ±
√
b− 2δ cosα = c

√
1− k sin2(

α

2
),

for some constants c, k. This last equation may be integrated using ellip-
tical integrals (see, for example, Lawden [56]) for α using

∫ α/2

0

dσ√
1− k2 sin2 σ

=
ct

2
+ d. (8.19)

374

The left hand side of this equation is an elliptic integral. Hence the
optimal inputs for the Engel’s system come from elliptic functions.

In general, it is difficult to find the solution to the least squares op-
timal control problem for steering the system from an initial to a final
point. However, it may be possible to find an approximate solution to
the problem by using the so-called Ritz approximation method. To ex-
plain what this means, we begin by choosing an orthonormal basis for
L2[0, 1], the set of square integrable functions on [0, 1]. One basis is a set
of trigonometric functions {ψ0(t), ψ1(t), . . .} given by ψ0(t) ≡ 1 and for
k ≥ 1,

ψ2k−1(t) =
√

2 cos 2kπt, ψ2k(t) =
√

2 sin 2kπt t ∈ [0, 1].

For a choice of integer N , a Ritz approximation to the optimal ith input
is assumed to be of the form

ui(t) =

N∑

k=0

αikψk(t).

The plan now is to apply this input to steer the system

q̇ = g1(q)u1 + · · ·+ gm(q)um (8.20)

from q(0) = q0 to q(1) = qf and to determine the coefficient vectors,
αi = (αi0, αi1, . . . , αiN) ∈ RN+1 for i = 1, . . . ,m, so as to minimize the
cost function

J =
1

2
(

m∑

i=1

‖αi‖2 + γ‖q(1)− qf‖2). (8.21)

In equation (8.21) the coefficient γ > 0 is a penalty term corresponding to
reaching the final state. For large γ the cost function weights the reaching
of the goal heavily. The heart of the Ritz approximation procedure is the
hope that for large N and large γ, we will find a u that steers to the final
point qf with low cost.

At this point, we have a finite-dimensional optimization problem,
which may be solved by a variety of methods. One method involving
a modification of the Newton iteration for minimizing J has been ex-
plored in [32] and [33], where a software package called NMPack for this
purpose is described. We refer the reader to these papers for details of
its application to various examples.

3.4 Steering with piecewise constant inputs

In this section, we describe the rudiments of a method for motion planning
for general nonholonomic systems due to Lafferriere and Sussmann [54].

375

The algorithm works for systems whose controllability Lie algebra is nilpo-
tent of order k. By way of review, this means that for systems of the form

ẋ = g1u1 + · · ·+ gmum

the Lie products between control vector fields of order greater than k are
0; i.e., [gi1 , . . . , [gip−1

, gip] . . .] is zero when p > k. The method proposed
in [54] is conceptually straightforward but the details of their method are
somewhat involved. The first step is to derive a “canonical system equa-
tion” associated with the given control system. The chief new concept
involved is that of formal power series in vector fields.

Recall from Section 2 of Chapter 7 that the flow associated with a
vector field gi was denoted φgi

t (q), referring to the solution of the differ-
ential equation q̇ = gi(q) at time t starting from q at time 0. This flow is
referred to as the formal exponential of gi and is denoted

etgi(q) := φgi

t (q).

The usage of the formal exponential is in that we will actually use iden-
tities of the form

etgi = (I + tgi +
t2

2!
g2
i + · · ·),

where polynomials like g2
i and g3

i need to be carefully justified. We will
defer this question for the moment and think formally of etgi(q) as a
diffeomorphism from Rn to Rn. Now, consider a nilpotent Lie algebra
of order k generated by the vector fields g1, . . . , gm. Recall from Section
4 of Chapter 7 that a Philip Hall basis is a basis for the controllability
Lie algebra which has been constructed in such a way as to keep track of
skew-symmetry and the Jacobi identity associated with the Lie bracket.
We define the Philip Hall basis of the controllability Lie algebra generated
by g1, . . . , gm to be

B1, B2, . . . , Bs.

Thus, basis elements are Lie products of order less than or equal to k. In
our language of formal power series, we will refer, for instance, to

:= g1g2 − g2g1
[g1, [g2, g3]] := g1g2g3 − g1g3g2 − g2g3g1 + g3g2g1.

It is a basic result of nonlinear control, called the Chen-Fliess series
formula, that all flows of the nonlinear control system (8.1), namely,

q̇ =

m∑

i=1

gi(q)ui q(0) = q

are of the form

St(q) = ehs(t)Bsehs−1(t)Bs−1 · · · eh2(t)B2eh1(t)B1(q) (8.22)

376

for some suitably chosen functions h1, h2, . . . , hs, known as the Philip
Hall coordinates. The meaning of equation (8.22) is as follows: all flows
that could possibly be generated by the control system of (8.1) may
be obtained by composing flows along the Philip Hall basis elements
B1, . . . , Bs. This result bears more than a passing resemblance to the
product of exponentials formula for manipulator kinematics, but we will
not digress to make this connection more explicit here. Furthermore,
St(q) satisfies a differential equation involving the basis elements, namely,

Ṡ(t) = S(t)(B1v1 + · · ·+Bsvs) S(0) = 1, (8.23)

where St(q) has been replaced by S(t) and the inputs v1, . . . , vs are the
“fictitious inputs” corresponding to the directions of the Philip Hall ba-
sis elements B1, . . . , Bs. We say fictitious since only the first m of the
Philip Hall basis elements correspond to g1, . . . , gm. The other inputs
correspond to Lie bracket elements and will eventually be dropped. Dif-
ferentiating equation (8.22) yields

Ṡ(t) =
s∑

j=1

ehsBs · · · ehjBj ḣjBj e
hj−1Bj−1 · · · eh1B1

=
s∑

j=1

S(t)e−h1B1 · · · e−hj−1Bj−1 ḣjBj e
hj−1Bj−1 · · · eh1B1

:=

s∑

j=1

S(t)Ade−h1B1 ···e−hj−1Bj−1 ḣjBj .

(8.24)

Here, in analogy with the formulas of Chapter 2, we have introduced the
notation

Ade−hiBi Bj = e−hiBiBje
hiBi .

Since the controllability Lie algebra is nilpotent of degree k, we can ex-
press each one of the elements on the right hand side in terms of the basis
elements B1, . . . , Bs. More specifically, it may be verified that

Ade−h1B1 ···e−hj−1Bj−1 = Ade−h1B1 · · ·Ade−hj−1Bj−1 . (8.25)

Thus each element on the right hand side of (8.24) is a linear combination
of B1, . . . , Bs and we may express

Ade−h1B1 ···e−hj−1Bj−1 ḣjBj =

(
s∑

k=1

pj,k(h)Bk

)
ḣj

for some polynomials pj,k(h). Using this in the equation (8.23) and equat-
ing coefficients of the basis elements Bi yields

s∑

j=1

pj,k(h)ḣj = vk k = 1, . . . , s.

377

These equations are then solved to give the differential equation

ḣ = Q(h)v h(0) = 0 (8.26)

which is a control system in Rs, called the Chen-Fliess-Sussmann equa-
tion, specifying the evolution of the Philip Hall coordinates in response
to the “fictitious inputs” v1, . . . , vs. It is important to realize that, in
general, the dimension s of the Philip Hall coordinates is greater than
n, the dimension of the state space of the control system. The initial
conditions are hi(0) = 0 corresponding to the identity diffeomorphism at
t = 0. This equation is the canonical form associated with the nilpotent
controllability Lie algebra associated with the given problem.

Example 8.5. Nilpotent system of degree three with two inputs
Consider a two-input system which is nilpotent of degree three on R4.
We will assume that g1, g2, [g1, g2], [g1, [g1, g2]] are linearly independent.
As the Philip Hall basis, we have

B1 = g1 B2 = g2 B3 = [g1, g2]

B4 = [g1, [g1, g2]] B5 = [g2, [g1, g2]].

Since [g2, [g1, g2]] = B5 is dependent on B1, B2, B3, B4 by hypothesis, we
have in (8.23) that v5 ≡ 0. An easy calculation shows that the coefficients
of the ḣj on the right hand side of (8.24) are given by

ḣ1 : B1

ḣ2 : B2 − h1B3 +
1

2
h2

1B4

ḣ3 : B3 − h2B5 − h1B4

ḣ4 : B4

ḣ5 : B5.

For instance, the coefficient of ḣ2 is calculated as

Ade−h1B1 B2 = B2 − h1[B1, B2] +
1

2
h2

1[B1, [B1, B2]]

= B2 − h1B3 +
1

2
h2

1B4.

Equating the coefficients of the Bi to vi with v5 = 0, we get the Chen-
Fliess-Sussmann equation

ḣ1 = v1

ḣ2 = v2

ḣ3 = h1v2 + v3

ḣ4 =
1

2
h2

1v2 + h1v3 + v4

ḣ5 = h2v3 + h1h2v2.

(8.27)

378

Note that this system is in R5, though the state space equations evolve
on R4.

Example 8.6. Two-input, five-state chained system
Consider a chained system with two inputs and five states, where the
input vector fields are

g1 =





1
0
q2
q3
q4




g2 =





0
1
0
0
0




.

The system is nilpotent of degree k = 4, and the Philip Hall basis vectors
are

B1, B2 : g1 g2

B3 : [g1, g2]

B4, B5 : [g1, [g1, g2]] [g2, [g1, g2]]

B6, B7 : [g1, [g1, [g1, g2]]] [g2, [g1, [g1, g2]]]

B8 : [g2, [g2, [g1, g2]]]

The vector fields g1, g2, g3 := adg1 g2, g4 := ad2
g1 g2, and g6 := ad3

g1 g2
span the tangent space of R5.

Thus, for the Chen-Fliess-Sussmann equations, we have v5 = v7 =
v8 = 0, and the coefficient of ḣj is given by

Ade−h1B1 · · ·Ade−hj−1Bj−1 Bj , j = 1,8.

We carry out the calculation for ḣ3 in detail:

Ade−h1B1 Ade−h2B2 B3

= Ade−h1B1

(
B3 − h2B5 +

1

2
h2

2B8

)

= B3 − h1B4 − h2B5 +
1

2
h2

1B6 + h1h2B7 +
1

2
h2

2B8.

The calculations for the remaining terms are carried out in a similar
fashion and the results are given below (we invite the reader to do the

379

calculation herself):

ḣ1 : B1

ḣ2 : B2 − h1B3 +
1

2
h2

1B4 −
1

6
h3

1B6

ḣ3 : B3 − h1B4 − h2B5 +
1

2
h2

1B6 + h1h2B7 +
1

2
h2

2B8

ḣ4 : B4 − h1B6 − h2B7

ḣ5 : B5 − h1B7 − h2B8

ḣ6 : B6

ḣ7 : B7

ḣ8 : B8.

Finally, with v5 = v7 = v8 = 0 the differential equation for the h ∈ R8 is
found to be

ḣ1 = v1

ḣ2 = v2

ḣ3 = h1v2 + v3

ḣ4 =
1

2
h2

1v2 + h1v3 + v4

ḣ5 = h1h2v2 + h2v3

ḣ6 =
1

6
h3

1v2 +
1

2
h2

1v3 + h1v4 + v6

ḣ7 =
1

2
h2

1h2v2 + h1h2v3 + h2v4

ḣ8 =
1

2
h1h

2
2v2 +

1

2
h2

2v3

with initial condition h(0) = 0.

The task of steering the system from q0 to qf still remains to be
done. This is accomplished by choosing any trajectory connecting q0 to
qf indexed by time t. This is substituted into (8.23) to get the expression
for the “fictitious inputs” v1, . . . , vn, corresponding to the first n linearly
independent vector fields in the Philip Hall basis of the control system.
The inputs vi are said to be fictitious, since they need to be generated by
using the “real” inputs ui, i = 1, . . . ,m. To do so involves a generalization
of the definition of Lie brackets given in Section 2 of Chapter 7. For
instance, to try to generate an input v3 corresponding to [g1, g2] in the
previous example, one follows the definition and uses the concatenation of
four segments, each for

√
ǫ seconds: u1 = 1, u2 = 0;u1 = 0, u2 = 1;u1 =

−1, u2 = 0;u1 = 0, u2 = −1. The resulting flow is given by

e
√
ǫg1e

√
ǫg2e−

√
ǫg1e−

√
ǫg2 . (8.28)

380

A formula called the Campbell-Baker-Hausdorff formula gives an expres-
sion for this in terms of the Philip Hall basis elements. We will make a
brief digression to state this formula, since it is important in its own right
(the proof and a more exhaustive recursive formulation of the coefficients
is given in [115]).

Theorem 8.5. Campbell-Baker-Hausdorff formula
Given two smooth vector fields g1, g2 the composition of their exponentials
is given by

eg1eg2 = eg1 + g2 + 1
2 [g1, g2] + 1

12 ([g1, [g1, g2]]− [g2, [g1, g2]]) · · · (8.29)

where the remaining terms may be found by equating terms in the (non-
commutative) formal power series on the right- and left-hand sides.

Using the Campbell-Baker-Hausdorff formula for the flow in equa-
tion (8.28) gives the Philip Hall coordinates to be

h = (0, 0, ǫ, h4(ǫ)),

where h4(ǫ) is of higher order than one in ǫ. Thus, the strategy of cy-
cling between u1 and u2 not only produces motion along the direction
[g1, g2], but also along [g1, [g1, g2]]. Thus, both v3, v4 6= 0. However both
the h1 and h2 variables are unaffected. To generate motion along the v4
direction, one concatenates an eight-segment input consisting of cycling
between the u1, u2 for 3

√
ǫ seconds. Since the controllability Lie algebra

is nilpotent, this motion does not produce any motion in any of the other
bracket directions (in the context of the Campbell-Baker-Hausdorff for-
mula above, the series on the right hand side of (8.29) is finite). This
example can be generalized to specify a constructive procedure for gener-
ating piecewise constant inputs for steering systems which have nilpotent
controllability Lie algebras.

When the controllability Lie algebra is not nilpotent, the foregoing
algorithm needs to be modified to steer the system only approximately.
The two difficulties in this case are:

1. The Philip Hall basis is not finite.

2. The Campbell-Baker-Hausdorff formula does not terminate after
finitely many terms.

One approach that has been suggested in this case is to try to change
the input gi using a transformation of the inputs, that is by choosing a
matrix β ∈ Rm×m so as to make the transformed g̃i, defined by

[
g̃1 g̃2 · · · g̃m

]
= β

[
g1 g2 · · · gM

]

a nilpotent control system. Other approaches involve “nilpotent approx-
imations” to the given control system. For more details on the algorithm
for steering nonholonomic systems using piecewise constant inputs, see
the paper of Lafferriere and Sussmann [54].

381

Figure 8.2: Three-fingered hand grasping an object. The small circles be-
low each finger indicate the internal forces applied by each finger. (Figure
courtesy of John Hauser)

4 Dynamic Finger Repositioning

We return now to the problem of repositioning the fingers on a hand
without actually lifting the fingers from the object. As we saw in the
examples in Section 4 of Chapter 7, if we have spherical fingertips con-
tacting a planar face, it is possible to move the contact point via pure
rolling. This section works out this problem in detail and gives several
different solutions for the dynamic finger repositioning problem.

4.1 Problem description

Consider the grasping control problem with rolling contacts, such as the
system shown in Figure 8.2. In Chapter 5, we derived the kinematic
equations of motion for a single body in contact with a set of fingers. In
local coordinates, the overall constraints on the system have the form

Jh(θ, x)θ̇ = GT (θ, x)ẋ, (8.30)

where θ is the vector of finger joint angles and x specifies the position
and orientation of the grasped object.

If the grasp described by the constraints in equation (8.30) is manip-
ulable, then any object velocity ẋ can be accommodated by some finger
velocity vector θ̇. However, the vector θ̇ may not be unique in the case
that the null space of Jh is nontrivial. This situation corresponds to the
existence of internal motions of the fingers that do not affect the motion
of the object. If we let u1 be an input which controls the velocity of the
object and let u2 parameterize the internal motions, then equation (8.30)

382

can be written as
ẋ = u1

θ̇ = J+
h G

Tu1 +Ku2,
(8.31)

where the columns of K span the null space of Jh.
Equation (8.31) describes the grasp kinematics as a control system.

The dynamic finger repositioning problem is to steer the system from
an initial configuration (θ0, x0) to a desired final configuration (θf , xf).
The explicit location of the fingertip on the object at the initial and final
configurations can be found by solving the forward kinematics of the
system.

The general case of finding u1(t) and u2(t) such that the object and the
fingers move from an initial to final position (while maintaining contact)
can be very difficult. We point out two interesting special cases:

1. If the hand has no redundant degrees of freedom (i.e., K is not
present) then it might be possible to move to an arbitrary loca-
tion/grasp using only u1. Moving just the contact location requires
a carefully chosen closed loop path in x.

2. If we have redundant degrees of freedom, then we can move the
fingers along the object while keeping the object position fixed (ẋ =
u1 = 0). In this case, we use only the vector fields in K to move
the fingers.

In the second case, it is sufficient to study the control of a single finger,
since the fingers are decoupled if the object is held fixed. We concentrate
here on the second case, which is considerably simpler.

4.2 Steering using sinusoids

Consider the case of a single spherical finger rolling on a plane. The
kinematics were derived in Chapter 7 and the associated control system
is repeated here:

η̇ =





q̇1
q̇2
q̇3
q̇4
q̇5




=





0
sec q1
− sin q5
− cos q5
− tan q1




u1 +





−1
0

− cos q5
sin q5

0




u2. (8.32)

As in the preceding discussion, we will change variables to new ones and
keep track of the Taylor series expansions of the nonlinear terms to get
a two-chained system. More specifically, with change of state

z1 = q1 z2 = q2 z3 = −q5 z4 = q3 − q1 z5 = q4 + q2

383

vf

uf

0.6

-0.6

0.6-0.6
vo

uo

0.5

0.0

-0.5

-1.0

1.00.50.0-0.5-1.0

Figure 8.3: Steering applied to a multifingered hand.

and change of input

v1 = −u2 v2 = sec q1u1

we get

ż1 = v1

ż2 = v2

ż3 = z1v2 + ψ1(z1)v2

ż4 = z3v2 + ψ2(z3)v1 + ψ(z1, z3)v2

ż5 = z3v1 + ψ4(z3)v1 + ψ5(z1, z3)v2,

(8.33)

where the ψi are quadratic or higher order in their respective arguments.
If these functions ψi are neglected, then we have a two-chained system
which can be steered using sinusoids. Unlike the case of the hopping
robot or car parking, the calculation of the Fourier series coefficients for
z4 and z5 is not easy. However, a numerical procedure based on using a
sines and cosines at integrally related frequencies may be used to steer the
finger on the surface of the object. An example of such a path moving a
spherical fingertip down the side of a planar object is shown in Figure 8.3.
In this figure, we consider the motion of a finger with a spherical tip
on a rectangular object (left). The plots to the right of the figure show
trajectories which move a finger down the side of the object. The location
of the contact on the finger is unchanged as shown in the upper graph
which plots the finger contact configurations (q1, q2) = (uf , vf), while
the location of the contact on the face of the object (q3, q4) = (uo, vo)
undergoes a displacement in the vo direction.

384

4.3 Geometric phase algorithm

In this subsection, we will describe the use of some techniques from clas-
sical differential geometry which can be brought to bear on the specific
problem of rolling a spherical finger on a planar surface.

As in Chapter 5, letQ be the configuration space of contact, Sf and S0

the surface of the fingertip and the object. Then, in local coordinates, Q
is parameterized by η = (αf , αo, ψ), where αf = (uf , vf), αo = (uo, vo) ∈
R2 are local coordinates on Sf and So respectively, and ψ is the angle of
contact. The kinematic equations of rolling contact from Chapter 5 are

Mf α̇f −RψMoα̇o = 0

TfMf α̇f + ToMoα̇o − ψ̇ = 0.
(8.34)

In the instance of a spherical finger rolling on a plane, we have that
Mo = I, To = 0 and that

Tf =
[
0 − 1

ρ tanuf
]

Mf =

[
ρ 0
0 ρ cosuf

]
,

where ρ is the radius of the finger. Since Mf and RψMo are nonsingular,
given either αf (t) ∈ R2 or αo(t) ∈ R2 there exists a unique path η(t) ∈ Q
which satisfies the rolling without slipping constraint. More specifically,
let αf (t), t ∈ [0, 1], be a path in Sf and denote u = α̇f . Then the path
η(t) ∈ Q is given by integrating the following differential equations

α̇f = u

α̇o = M−1
o RψMfu

ψ̇ = (Tf + ToRψ)Mfu.

(8.35)

This is to say that there exists a well defined lifting map ρ−1 : Sf → Q
which lifts every path in Sf to a path in Q. The following classical
theorem describes how a closed path in Sf generates a change in the
angle of contact ψ. Using the formulas for Tf ,Mf and To above yields

ψ̇ = − sinufu2. (8.36)

Note that this equation is independent of the radius ρ of the sphere. Thus,
the following theorem, though stated for spheres of radius one, actually
holds for spheres of arbitrary radius.

Theorem 8.6. Gauss-Bonnet theorem
Let αf : [0, 1] → Sf be a closed path on the sphere of radius one which
encloses a cap shaped region Ω as shown in Figure 8.4. Let ∆ψ be the
change of the angle of contact as a result of rolling the sphere on the plane
along the path given by αf (·). Then

∆ψ = − Area of Ω, (8.37)

385

αf (t)
Ω

Figure 8.4: Geometric phase of a path in the sphere.

where the area of Ω is measured on the (curved) surface of the sphere of
radius one.

Proof. From equation (8.36), we have that

ψ̇ = TfMf α̇f = − sinuf v̇f .

Integrating ψ̇ along the curve αf (·) and applying Green’s theorem to the
line integral yields

∆ψ =

∫ 1

0

ψ̇ dt =

∮
− sinuf dvf

= −
∫ ∫

Ω

cosuf dvf duf = − Area of Ω,

since cosuf duf dvf is the infinitesimal area (area form) on a sphere of
radius one in local coordinates.

In the preceding theorem, we saw that the net change in the contact
angle ∆ψ depends on the area enclosed by the curve αf (·) on a sphere of
radius one regardless of the actual radius of the sphere! ∆ψ is referred to
as the geometric phase or nonholonomy of the path αf (·). It tells us the
motion (in fact the area to be covered by a closed path traced out by the
finger) to generate a certain change in the contact angle ∆ψ.

In the next proposition, we show how to generate motion on the spher-
ical finger by using a closed path αo on the planar surface of the object.
This specifies the motion of the object surface required to reposition the
finger. In turn, we may use this method to produce closed loops in the
motion of the finger, which produce changes in phase ∆ψ. The devel-
opment is completely geometric and does not use the rolling equation
(8.35).

Proposition 8.7. Sphere rolling on a plane
Let αf and α̃f be two points on the sphere which are a distance l apart
on the sphere. Assume that l < π

2 . Then, rolling the sphere on the

386

D′

θ

x (start)

π
2

π
2

π
2

π
2

start
AB

C

D

C ′

αfα̃fB′

Figure 8.5: Closed path in the plane generates motion on the sphere.

plane along the closed curve ABCDA shown in Figure 8.5 takes αf to α̃f
provided the segments AB, DA are of length x and BC, CD are of length
π
2 , and x solves the equation

2

(
x− tan−1 x

π/2

)
= l.

Proof. Connect αf and α̃f by an arc of a great circle, and denote by A
the starting point on the plane. Tracing the straight line from A to B
and then to C on the plane induces a curve in the sphere which starts at
αf , passes through B′, and then comes to the north pole, C ′, as shown
in the Figure 8.5. Since the distance traversed by the fingertip on the
surface of the object is the same as the distance on the sphere, we have
that the distance between αf and B′ is x and ∠(αfB

′C ′) = π
2 . Going

from C to D at an angle θ and a distance π
2 is equivalent to going down

from C ′ to some point D′ on the equator and d(B′,D′) = θ. By tracing
a straight line from D to A on the plane, we follow the equator from D′

to some point α̃f , where d(α̃f ,D
′) = x. It is clear from the figure that

d(αf , α̃f) = 2x− θ = 2x− 2 tan−1 x

π/2
:= f(x).

Furthermore, for each l < π
2 the following equation

f(x) = l

has a unique solution x ∈ [0, π2] because f(0) = 0, f(π/2) = π/2 > l and
f ′(x) > 0.

To summarize, using techniques from geometry and Green’s theorem
one can generate strategies for rolling the planar surface of an object
face to cause certain desired motion in the spherical fingertip and the
angle of contact. The method appears to be ad hoc and specific to the

387

specific geometry of the finger and the object, however, it may in fact
be generalized to other geometries. In fact, there is a generalization of
the method to situations other than fingers rolling on objects called the
method of geometric phase. For example, this method can be used to solve
problems of reorienting satellites in space or to give an explanation for
how cyclic motions of cilia on the surface of a paramecium cause forward
motion in the paramecium.

388

5 Summary

The following are the key concepts covered in this chapter:

1. Optimal controls (minimizing integral least squares cost) for steer-
ing a system with growth vector (2, 3) of the form

q̇1 = u1

q̇2 = u2

q̇3 = q1u2 − q2u1

are sinusoidal. Further more when q1(0) = q2(0) = q1(1) = q2(1) =
0, the optimal inputs are sinusoids at frequency 2π.

2. For a system of the form

q̇ = u

Ẏ = quT − uqT

the optimal steering inputs, minimizing the integral least squares
cost, are sinusoidal. Further, when q(0) = q(1) = 0 the optimal
inputs are sinusoids at integrally related frequencies.

3. Using integrally related sinusoids as (sub-optimal) inputs, one can
steer chained form systems. A one-chain system is one of the form

q̇1 = u1

q̇2 = u2

q̇3 = q2u1

q̇4 = q3u1

...

q̇n = qn−1u1

Generalizations to multi-chain systems also exist. Involutivity con-
ditions for converting given control systems into the chained form
may be given.

4. While it is difficult to give closed form expressions for the optimal
controls associated with solving the least squares steering problem
for a nonholonomic control system, one can derive formulas for the
time derivatives of the optimal inputs. Further, numerical tech-
niques, such as the Ritz approximation algorithm, may be used to
derive approximate algorithms for generating the optimal controls.

5. Piecewise constant inputs can be used to steer a nonholonomic con-
trol system in the Philip Hall basis coordinates when the controlla-
bility Lie algebra is nilpotent.

389

6. Dynamic finger repositioning on the surface of an object can be
carried out using sinusoids. In the special case of a spherical finger
rolling on the surface of a flat object, the geometry of the Gauss-
Bonnet theorem may be used to position the finger on the object
surface and adjust the angle of contact.

6 Bibliography

While research in nonholonomic behavior of mechanical systems is quite
classical, interest in steering and trajectory generation is quite recent. To
our knowledge, the connection between nonholonomy and constructive
controllability was first pointed by Laumond [55] in the context of mobile
robots and Li [58, 60] in the context of fingers rolling on the surface of
a grasped object. The literature in controllability for nonlinear systems
is quite extensive. A good review of it is to be found in the textbooks
of Nijmeijer and van der Schaft [83] and Isidori [43]. However, some of
the most important first results on constructive controllability appeared
in [11] and [4], where the least squares steering problem was solved for
a class of model systems on Rn and SO(3) respectively.

In this chapter, we have used as source material some of our own recent
publications in this area, such as [60] and [77] for steering fingers rolling
on the surface of an object, [78] which discusses the use of sinusoids in
steering nonholonomic systems, [103] which discusses the structure of op-
timal controls for steering problems, [32, 33] on the Ritz approximation
procedure for solving optimal control problems, and [112] which solves
the problem of parking a car with N trailers. A recent collection of pa-
pers [61] contains a good cross-section of papers on nonholonomic motion
planning for further reading. A discussion of nonholonomic mechanics
and geometric phase is in [67, 68].

390

7 Exercises

1. Show that the following system

q̇1 = u1

q̇2 = u2

q̇3 = q1u2

q̇4 =
1

2
q21u2

q̇5 = q1q2u2

q̇6 =
1

6
q31u1

q̇7 =
1

2
q21q2u2

q̇8 =
1

2
q1q

2
2u2

is controllable and nilpotent of degree four. Can you find a nonlinear
change of coordinates to transform this system into a one-chained
form?

2. Show that the following system is controllable and nilpotent:

q̇1 = u1

q̇2 = u2

q̇3 = q1u2 − q2u1

q̇4 = q21u2

q̇5 = q22u1.

3. Consider the following control system

q̇ = u

Ẏ = quT − uqT

where u ∈ Rm and Y ∈ so(m).

(a) Derive the Euler-Lagrange equations for the system, by mini-
mizing the following integral

1

2

∫ 1

0

uTu dt.

(b) For the boundary conditions q(0) = q(1) = 0, Y (0) = 0 and
Y (1) = ŷ for some y ∈ R3, solve the Euler Lagrange equations
to obtain the optimal inputs u.

391

(c) Find the input u to steer the system from (0, 0) to (0, Ỹ) ∈
Rm × so(m).

4. Consider the following system

q̇1 = u1

q̇2 = u2

q̇12 = q1u2

q̇121 = q12u1

q̇122 = q12u2

Apply the inputs

u1 = a1 sin 2πt+ a2 cos 2πt+ a3 sin 4πt+ a4 cos 4πt

u2 = b1 sin 2πt+ b2 cos 2πt+ b3 sin 4πt+ b4 cos 4πt

to this system and integrate q̇121 and q̇122 from t = 0 to t = 1
to obtain a system of polynominal equations in (ai, bi). Propose a
method for solving for the coefficients (ai, bi) given the initial and
final states.

5. Two-input two-chained system
The following system is referred to as a two-input, two-chained
system

ẋ0 = u1 ẏ0 = u2

ẋ1 = y0u1 (ẏ1 = x0u2)

...
...

xnx
= xnx−1u1 yny

= yny−1u2

where y1 := x0y0 − x1 to account for skew-symmetry of the Lie
bracket.

(a) Prove that the system is controllable.

(b) Show that for each qk, k ≥ 1, the inputs u1 = a sin 2πt and
u2 = b cos 2πkt steer the system to the final value of qk. Give
an explicit formula for the final value of qk in terms of (a, b).

(c) Show that for each yk, k ≥ 2, the inputs u1 = b cos 2πkt and
u2 = a sin 2πt steers the system to the final value of yk.

(d) Give an algorithm for steering the system from an initial state
to a final state.

6. In the proof of Proposition 8.4, it was asserted that if u satisfies the
differential equation

u̇ = Ω(t)u

392

for some Ω ∈ so(m), then the solution of u is of the form

u(t) = U(t)u(0)

for some U(t) ∈ SO(m). Prove this assertion.

7. Proposition 8.4 gave a formula for the first derivative of the optimal
inputs. Use the method of the proof of that proposition to obtain
a formula for ü. Express the answer in terms of Lie brackets of the
input vector fields. In fact, if you are adventurous, try to find the
formula for u(n).

8. Use the results of Proposition 8.16 to show that the optimal input
of that proposition normalized by ‖u(0)‖, that is,

u(t)

‖u(0)‖

solves the minimum time steering problem to steer the system from
q(0) = q0 to q(T) = qf subject to the constraint that ‖u(t)‖2 ≤ 1
for all t.

9. Apply the methods of Proposition 8.16 to solve the optimal control
inputs for the model control system we studied in Section 2, namely

q̇1 = u1

q̇2 = u2

q̇3 = q1u2 − q2u1.

10. Extend the method used to find the optimal inputs for Engel’s
system to find optimal inputs for the system of Exercise 2.

11. Consider the least squares optimal input steering problem for a
system with drift:

q̇ = f(q) +

m∑

i=1

gi(q)ui.

(a) Find the expression for the optimal Hamiltonian and prove
that the optimal inputs satisfy the differential equation

u̇ = Ω(q, p)u =




pT [f, g1]

...
pT [f, gm]



 (8.38)

with Ω(q, p) defined as in (8.16).

393

(b) Find the second derivatives of the optimal inputs given in
equation (8.38).

12. Consider the following system

q̇1 = u1

q̇2 = u2

q̇3 = q2u1

with initial condition q(0) = 0. Let the inputs be of the form

u1 = α1,0α1,1 cos 2πt+ α1,2 sin 2πt

u2 = α2,0 + α2,1 cos 2πt+ α2,2 sin 2πt.

(a) Integrate the control system symbolically from t = 0 to t = 1
to obtain q(1) as a function of α, the coefficient vector of the

inputs, and compute the Jacobian A = ∂q(1)
∂α ∈ R3×6.

(b) Prove that if A is full rank then the system is controllable with
inputs of the above form.

13. Consider the one-chain system in equation (8.7). For the Philip
Hall basis g1, g2, adkg1 g2, k = 1, . . . , n − 1, derive the Chen-Fliess-
Sussmann equation.

14. Consider the following system

q̇1 = u1

q̇2 = u2

q̇3 = q1u2 − q2u1

q̇4 = q21u2.

(a) Derive the Chen-Fliess-Sussmann equation.

(b) Assuming that the inputs are of the form

u1 = a0 + a1 cos 2πt+ a2 sin 2πt

u2 = b0 + b1 cos 2πt+ b2 sin 2πt,

compute the polynomial equation for the amplitude parame-
ters in terms of the initial and final states.

394

Chapter 9

Future Prospects

In this book, we have tried to give the reader a feel for the sorts of analyt-
ical tools that one needs in the study of robotic manipulation. We have
adopted a mathematical point of view because of its compactness. One
thing that this mathematical point of view masks is the excitement that
we feel for robotics technology and its future because of the considerable
innovation and the development being made in its use. The robotics in-
dustry has reached one plateau with the successful introduction of robots
into automotive manufacturing—spot welding and painting are two are-
nas where robotic usage is almost universal, assembly of engines is an
area where the amount of utilization is more varied—and into electronic
assembly. There are several other areas where the usage of robotics is in
its infancy and this chapter is dedicated to brief descriptions of some of
these fields along with a quick assessment of their current status.

One question that comes up often in such a retrospective is the differ-
ence between “teleoperation” and “robotics.” While precise definitions
and distinctions between these two topics are elusive, the rough distinc-
tion appears to be in the amount of human interaction: “human intelli-
gence” rather than “machine intelligence” required for the operation of
the same set of basic devices. Consequently, it hardly seems surprising to
us that in the natural course of evolution of the technology, teleoperation
will precede true robotic or autonomous operation. Indeed, the pragmatic
point of view would be to favor the introduction of new robotic devices
first in teleoperated form. This has also historically been the path of
evolution of the field. Nonetheless, there are good reasons for not having
a person in the feedback loop in many applications:

1. Communication delays in transmission of sensor information and
receipt of command information

2. Slow speed of response of humans to numerical and quantitative
data

395

In our opinion, the teleoperators of today are the autonomous robots of
tomorrow and as such we will not make a distinction between them in
this chapter.

One other topic that comes up a great deal in the popular science
press is the concurrent usage of the terms virtual reality, and telepres-
ence. The term virtual reality refers to the remote creation of a synthetic
environment containing sights, sounds, touch, and forces. While remote
sight and sound are easily implemented, remote touch and force are not
as easily achievable. In order to manipulate objects remotely (telepres-
ence), it is important to be able to have each of these senses. Thus, there
is an intimate relationship between remote manipulation or telepresence
and virtual reality. Indeed, we see that the bulk of the current litera-
ture on virtual reality is really about telepresence, since the purpose of
simulating a remote environment is to allow a person to interact with it.

In summary, we feel that the technological progress in the years to
come will be on a broad front spanning teleoperation, virtual reality, and
dextrous manipulation. In the rest of the chapter, we will say a little
bit about the opportunities. The sections are organized according to
the scale of the robots: Section 1 deals with conventionally sized robots,
Section 2 with robots at the millimeter scale, and Section 3 with robots
at the micrometer and nanometer scale.

1 Robots in Hazardous Environments

One of the chief areas for the future (and current) use of robots of the
conventional size is in hazardous environments. In this section, we give
a brief description of the sorts of environments in which robots will be
(and are) found.

Space

The best known example of a robot in space is the 20 meter long re-
mote manipulator system on board the space shuttle. It has six degrees
of freedom and is usually manually teleoperated by an astronaut under
direct visual feedback. There is, however, the ability to have the robot
be moved under computer control in Cartesian coordinates. There are
Japanese plans to build a flight telerobotic servicer which has two cooper-
ating robot arms for repairing satellites and other coordinated activities
on board a self-propelled platform. Other examples of robots in space
include the Mars rover and other planetary exploring robots which fea-
ture tracked or wheeled mobile bases with arms on board for scooping
soil samples. It is not anticipated that these devices will be under human
control remotely since the transit time delays for commands are too high
to allow for meaningful remote feedback actions.

396

Underwater

In the last decade, several remotely-operated vehicles have been built
for inspection of underwater oil derricks and exploration. Their devel-
opment has been motivated by the high cost of human divers and the
risk to life of working under water. For the most part they consist of a
mobile platform, either on an umbilical line from the mother ship or com-
pletely autonomous, fitted with one or more robotic arms. Most of these
robots are remotely piloted and most current undersea manipulators are
hydraulic to withstand the high forces and corrosive elements that they
need to withstand. In the future, there will be a surge in the number
of completely autonomous robots for exploration of the ocean floor and
other unstructured environments for which the human reaction time is
too large.

Nuclear, toxic waste disposal and mining

Some of the earliest work in robotics came from teleoperators for handling
radioactive material. In recent years mobile robots with robotic arms
onboard for inspection, maintenance, and even for handling of spent fuel
rods, have become more prevalent. With the growth in the extent and
nature of hazardous materials that need to be disposed worldwide, robots
for handling and disposing toxic materials will need to be developed.
Mining environments are similarly hazardous and there are already quite
a few different kinds of mining vehicles and arms that can be remotely
operated.

Firefighting, construction and agriculture

One can visualize a scenario in which maps of buildings would be down-
loaded onto robots at the scene of a fire. These robots can then be
used for firefighting using onboard heat and smoke detectors and trailing
an umbilical cord carrying water as well as fire-retardant chemicals and
relaying video data to remote locations. In this application, it seems im-
portant to have robots that can negotiate stairways as well as corridors
(i.e., legged as well as wheeled robots). Automated construction is a field
in its infancy, but robotic tools for accurate and risk-free construction,
sometimes in underground or underwater environments, are developing
rapidly. In agriculture, multifingered robot hands mounted on an arm
and equipped with vision systems have been used for picking oranges
and for harvesting crops. It is thought that robots could also be used for
tilling and planting.

Robotic systems have also been used for deboning meat in meat pack-
ing plants in Australia. Finally, an amazing robotic system that has been
used for sheep shearing has been developed at the University of West Aus-

397

tralia and features the development of a wrist with no singularities in the
workspace of the manipulator [114].

2 Medical Applications for Multifingered Hands

In recent years, there has been a great deal of excitement about min-
imally invasive surgery, including a number of techniques for accessing
internal organs through small incisions or orifices in the body (varying in
size from about 3 millimeters to 11 millimeters). As a result, trauma to
muscles and other tissue which need to be cut in traditional surgery is
minimized, resulting in a considerable savings in recovery time, risk to life
during the operation and hospital stay. Typically, in these procedures,
slender probes are introduced via a puncture and tools such as probes
with laser light sources, cameras, and instruments are fed into the body
cavity. In some cases, the body cavity is distended with gas (usually the
abdominal cavity) to create viewing room. The advances in active optics
(CCD imagers and high resolution displays) and fiber optics have made it
possible for the surgeon to have very high quality images of the inside of
the body through a small aperture. Several instruments can then be used
to take advantage of this vision of the inside of the body cavity: the endo-
scope is used for the inside of the gastro-intestinal tract, the laparoscope
for the abdominal cavity, the thoracoscope for the thoracic cavity and
the arthroscope for the inside of the joints. Several procedures, such as
the removal of the gall bladder (cholecsystectomy) using the laparoscope,
removal for biopsy of polyps in the gastro-intestinal tract using the en-
doscope, repairing hernias in the lung cavity using the thoracoscope, and
scraping away scar tissue in the knee joint using the arthroscope, are now
commonplace. Of the 600,000 cholecsystectomies performed annually in
the U. S. it is thought that up to 500,000 are performed laparoscopically
and, according to some practitioners, minimally invasive techniques will
dominate “open” surgery in the future.

However, what limits minimally invasive surgery is manipulator tech-
nology, for the following reasons:

1. Inadequate degrees of freedom. Current needle holders, cutters and
other tools transmit a surgeon’s hand motion through passive mech-
anisms. Further, tactile feedback is disrupted. Foremost among the
limitations imposed by today’s tools is their limited number of de-
grees of freedom. For example, a needle driver that can slide, twist
and pivot (up and down as well as left and right) inside the body
cavity gives a surgeon only four degrees of freedom without full
control of orientation. Thus, suture lines must radiate from the
insertion point, since the needle can only be driven by twisting the
driver about its long axis.

398

2. The need for fine motion control in surgery. In open surgery the sur-
geon braces herself so as to reduce the amount of tremor transmit-
ted to the end of the surgical device. In the instance of minimally-
invasive surgery, the fulcrum at the point of entry of the instrument
reduces the tremor for pivoting motions of the tool, but does not
help positioning accuracy in the other directions caused by shoulder
and elbow tremor.

Improved manipulators with many degrees of freedom would increase
efficiency, safety, and the range of cases that could utilize these methods
by addressing the drawbacks mentioned above. However, the kinematics
of useful devices is complex for many reasons. To realize the gains of min-
imally invasive surgery, we feel that the technology of multifingered robot
hands could be brought to bear. The design, construction, and control
of a miniature hand-like manipulator requires significant departures from
more traditional robot manipulators. Because of the small sizes of the
fingers (on the order of millimeters), direct actuation of each rotary or
prismatic joint is not practical. In some of our own preliminary work, we
have constructed small fingers which are either controlled by cables or by
small hydraulic actuators. The fabrication techniques for the manipula-
tor are borrowed from integrated circuit technology. Although common
metal and plastic materials are capable of developing biologically signifi-
cant forces at this small scale, it is a challenge to develop actuators which
exhibit large enough ranges of motion.

At the outset, teleoperator technology which is used to reflect the
actions of the surgeon into the body cavity will be used to control the
surgical manipulators. User interfaces such as sensor gloves worn by
the surgeon would provide the surgeon with tactile and force feedback,
while the positioning of the fingers would be measured by sensors and
transmitted to small multifingered hands. One such system has been
proposed by us in [19].

The growth potential of this application is enormous. Remote surgery
is being explored for use on the battlefield and in space, and with greater
intelligence, control, and sensing built into surgical manipulators, one can
conceive of surgical workstations in the not too distant future.

3 Robots on a Small Scale: Microrobotics

In many new applications, it is necessary to handle or manipulate very
small objects, for example living cells or parts of semiconductor electron-
ics. The scale of operations that we visualize in these applications are
several orders of magnitude smaller than those involved in the surgical
applications of Section 2, which we have termed milli-robots. Thus, in
this section we will concentrate on micro- and nano-scale robots. There

399

are two different approaches to dealing with these small objects: the first
to use a conventional (large) manipulator with a very precise control sys-
tem and the second is to miniaturize the manipulator. There are many
advantages to shrinking the robots to the same scale as the parts being
manipulated:

1. Delicate forces can be applied.

2. Robots can be made more accurate.

3. Robots can be fabricated using silicon processing and photolitho-
graphic techniques.

The notion of a micro-robot on a chip has been popularized by Brooks and
Flynn [16] and Pister, Fearing, and co-workers [91, 92, 93]. We foresee a
scenario in which these robots see wide application in micro-teleoperation
in cramped areas, and in massively parallel handling of small biological
and electromechanical systems. In this section, we abstract from Fear-
ing [31] some of the technological challenges and opportunities in this
rapidly growing area.

There are many engineering issues to be addressed in building micro-
robotic systems: the power source, the propulsion method (if they are
mobile), control integrated with sensing, and communications with the
macro-world. One key new technology that provides new capabilities for
sensing and actuation at the micro scale is micromachining. This is the
ability to machine at very small scales, including the micron scale, us-
ing techniques from integrated circuit fabrication. This can be used, for
instance, to produce actuators which have hundreds of miniature cilia
(like a paramecium); or to make mechanisms like grippers that can han-
dle parts of the size of 10µ diameter or planar rotary motors of a few
microns size and sensors like miniature gyroscopes. At these sizes, forces
scale differently so that electrostatic forces are stronger than electromag-
netic forces. This necessitates a rethinking of actuation methods for these
mechanisms.

Intelligent sensors, actuators and control systems can be integrated on
a single chip. A novel integrated system for manipulating dry parts in the
plane was proposed by Pister et al. [92]. This system consists of a 1 cm2

silicon substrate with an air bearing to support individual 1 mm2 plat-
forms. The individual platforms are driven in the plane by electrostatic
forces and can carry grippers, probes for sensing, or tools for processing.
Capacitive position sensing of the platforms is added to complete the sys-
tem. This system has been partially fabricated and a conceptualization
of it is presented in Figure 9.1. It was designed in analogy to macro-robot
manipulator called Robotworld (made by Automatix Corporation) and
was made to automatically align and splice together fiber optic cables.

Current micro-mechanical systems are for the most part planar. How-
ever, it is clear that for manipulators to extend far beyond the surface

400

...
.....

............

......

......

............

.....

.....
..................................... ..

...
.....

............

......

..
..........
..
..........

..
?

s

.............

..........................

.............

.............
?

??

Sensing circuitry

Probe

Platform

Electrode

Air hole

Figure 9.1: (a) View of several probing platforms floating on the same
bearing surface. (b) Detailed view of a single platform. (Figures courtesy
of Kristofer Pister and Ronald Fearing)

that they are mounted on, it is important to have 3-D structures. A
promising new approach in this regard is the micro-hinge method of Pis-
ter et al. [93]. This approach consists of actually fabricating components
in 2-D, but providing them with the ability to rotate or slide into place
resulting in the assembly of a 3-D structure. By using techniques drawn
from origami, the Japanese art of paper folding, the structures can be
made to self assemble under agitation in a water bath after emergence
from the silicon foundry.

In the years to come we feel that there will be an explosive growth
of micro-machined robots with propulsion capabilities in fluids and with
onboard robots and multifingered robots for manipulation so as to do a
variety of tasks both on the biological and integrated circuit fronts.

401

402

Appendix A

Lie Groups and Robot

Kinematics

Readers familiar with differential geometry will have observed that most
of the analytic tools we use in this text are derived from Lie group theory
and Riemannian geometry. In this appendix, we give a brief introduction
to the basics of Lie group theory and its connections with rigid body
kinematics.

1 Differentiable Manifolds

We begin with a brief review of differential geometry, based on the treat-
ment given by Boothby [9]. The material here is intended primarily to
fix the notation used in the subsequent sections.

1.1 Manifolds and maps

Let U ⊂ Rn and V ⊂ Rm be open sets. A mapping f : U → V is a smooth
map if all partial derivatives of f , of any order, exist and are continuous.
If m = n and f is bijective and both f and f−1 are smooth, then f is
called a diffeomorphism and U and V are said to be diffeomorphic.

A manifold of dimension n is a set M which is locally homeomorphic
to Rn. We parameterize the manifold by using a set of local coordinate
charts. A local coordinate chart is a pair (φ,U), where φ is a function
which maps points in the set U ⊂ M to an open subset of Rn. Two
overlapping charts (φ,U) and (ψ, V) are C∞ related if ψ−1 ◦ φ is a dif-
feomorphism where it is defined. A collection of such charts with the
additional property that the U ’s cover M is called a smooth atlas. A
manifold M is a smooth manifold if it admits a smooth atlas.

403

The properties of mappings between manifolds are defined in terms
of local coordinate charts. Let F : M → N be a mapping between
two smooth manifolds and let (U, φ) and (V, ψ) be coordinate charts for
M and N , respectively. The mapping F : M → N is smooth if F̃ =
ψ ◦ F ◦ φ−1 : φ(U)→ ψ(V) is smooth for all choices of coordinate charts
on M and N . Similarly, F is a diffeomorphism if F̃ is a diffeomorphism
for all coordinate charts.

1.2 Tangent spaces and tangent maps

Let M be a smooth manifold of dimension n and let p be a point in
M . We write C∞(p) for the set of smooth, real-valued functions on M
whose domain of definition includes some open neighborhood of p. A
map Xp : C∞(p) → R is called a derivation if, for all α, β ∈ R and
f, g ∈ C∞(p), it satisfies

(i) Xp(αf + βg) = α(Xpf) + β(Xpg) (linearity)

(ii) Xp(fg) = (Xpf)g(p) + f(p)(Xpg) (Leibniz rule)

The set of all derivations Xp : C∞(p) → R defines a vector space over
the reals with the operations

(Xp + Yp)f = Xpf + Ypf

(αXp)f = α(Xpf).

The tangent space of M at a point p, denoted TpM , is the set of
all derivations Xp : C∞(p) → R. Elements of the tangent space are
called tangent vectors. Let (U, φ) be a coordinate chart on M with local
coordinates (x1, . . . , xn). Then, the set of derivations { ∂

∂xi
} forms a basis

for TpM and hence we can write

Xp = X1
∂

∂x1
+ · · ·+Xn

∂

∂xn
.

The vector (X1, . . . ,Xn) ∈ Rn is a local coordinate representation of
Xp ∈ TpM .

Let F : M → N be a smooth map. We define the tangent map of F
at p as the linear map F∗p : TpM → TF (p)N defined by

F∗pXp(f) = Xp(f ◦ F),

where Xp ∈ TpM and f ∈ C∞(F (p)). We also make use of the notation
TpF to denote the tangent map of F at p. The tangent map satisfies the
following properties:

1. If H = F ◦G is the composition of two smooth maps F and G, then
H∗p = F∗G(p) ◦G∗p or TpH = TG(p)F ◦ TpG.

404

2. If F : M → N is a diffeomorphism, then F∗p : TpM → TF (p)N is an
isomorphism of tangent spaces with inverse (F∗p)−1 = (F−1)∗F (p).

If c : R→M is a curve in M such that c(0) = p and ċ(0) := c∗t(
∂
∂t)|t=0 =

Xp, then TpF (Xp) = d
dtF (c(t))|t=0.

Let M be a manifold of dimension n. The tangent bundle of M,
denoted TM , is a manifold of dimension 2n defined by

TM =
⋃

p∈M
TpM.

An element of TM will be written as (p,Xp) or simply Xp, where p ∈M
and Xp ∈ TpM . There is a natural projection π : TM → M given by
π(Xp) = p.

1.3 Cotangent spaces and cotangent maps

Given the tangent space TpM to a manifold M at a point p, we define the
cotangent space of M at p, denoted T ∗

pM , as the set of all linear functions
ωp : TpM → R. T ∗

pM is a vector space having the same dimension
as TpM and elements of T ∗

pM are called cotangent vectors. We write
〈ωp,Xp〉 for the action of a cotangent vector ωp ∈ T ∗

pM on a tangent

vector Xp ∈ TpM . If { ∂
∂x1

, . . . , ∂
∂xn
} is a basis for TpM corresponding

to local coordinates (x1, . . . , xn), the dual basis for T ∗
pM is given by

{dx1, . . . , dxn}, where

〈dxi,
∂

∂xj
〉 = δij , i, j = 1, . . . , n.

Given a function f : M → R, we define a cotangent vector df(p) ∈
T ∗
pM by

〈df(p),Xp〉 = Xp(f), Xp ∈ TpM.

df(p) is called the differential of f . Relative to a chart (φ,U) with local
coordinates x = (x1, . . . , xn), df(p) is written as

df(x) =
∂f

∂x1
(x)dx1 + · · ·+ ∂f

∂xn
(x)dxn,

where x = φ(p).
Let F : M → N be a smooth map. The cotangent map of F is the

linear map F ∗
p : T ∗

F (p)N → T ∗
pM defined by

〈F ∗
pαF (p),Xp〉 = 〈αF (p), F∗pXp〉, αF (p) ∈ T ∗

F (p)N,Xp ∈ TpM.

We also make use of the notation T ∗
pF to denote the cotangent map of

F at p.

405

Let M be a manifold of dimension n. The cotangent bundle of a
manifold M , denoted T ∗M is a manifold of dimension 2n defined as

T ∗M =
⋃

p∈M
T ∗
pM.

An element of T ∗M will be written as (p, αp) or simply αp ∈ T ∗
pM .

1.4 Vector fields

A smooth vector field X on a manifold M is defined as a smooth map
X : M → TM satisfying π ◦X = id, where π : TM →M is the canonical
projection and id : M → M is the identity map on M . We let X(M)
denote the set of all smooth vector fields on M . Relative to a coordinate
chart (φ,U), a vector field is written as

X(x) = X1(x)
∂

∂x1
+ · · ·+Xn(x)

∂

∂xn
,

where each Xi is a smooth function defined on an open neighborhood of
x = φ(p). It is customary to write a vector field as a column vector

X(x) =




X1(x)

...
Xn(x)



 .

Vector fields represent differential equations on manifolds. Let c :
(a, b) → M be a curve on the manifold. The curve c is said to be an
integral curve of the vector field X if

ċ(t) = X(c(t)).

By the existence and uniqueness theorem for ordinary differential equa-
tions, the existence of integral curves for a given nonzero vector field is
guaranteed locally. The vector field is said to be complete if the domain
of definition of the integral curves can be chosen to be (−∞,∞). In this
case, the integral curves of a vector field define a one-parameter family
of diffeomorphisms Φt(q) : M →M with the understanding that Φt(q) is
the point on the integral curve starting from initial condition q at t = 0.
This one parameter family of diffeomorphisms is referred to as the flow
of the vector field X.

Let X be a smooth vector field and f ∈ C∞(M) a smooth function
on M . The Lie derivative of f with respect to X is a new function
Xf : M → R defined by

Xf(p) = Xpf.

406

In coordinate chart (φ,U), if we write X =
∑n
i=1Xi(x)

∂
∂xi

, then

Xf(x) =

n∑

i=1

∂f

∂xi
Xi(x),

where all partial derivatives are evaluated at x = φ(p).
Let X and Y be two smooth vector fields. The Lie bracket of X and

Y , denoted [X,Y], is a new vector field defined by

[X,Y]f = X(Y f)− Y (Xf).

It is not difficult to show that [X,Y] satisfies all the properties of a
derivation. In local coordinates, if we write X =

∑n
i=1Xi(q)

∂
∂xi

and

Y =
∑n
i=1 Yi(q)

∂
∂xi

, then the Lie bracket vector field [X,Y] is given by

[X,Y] =
n∑

j=1

(
n∑

i=1

∂Yj
∂xi

Xi −
∂Xj

∂xi
Yi

)
∂

∂xj
.

Let F : M → N be a smooth mapping between manifolds and X ∈
X(M), Y ∈ X(N) smooth vector fields. We say that X and Y are F -
related if they satisfy

YF (p) = F∗pXp.

If F is a diffeomorphism, then given a vector field X ∈ X(M) we can
define a new vector field Y ∈ X(N) via the push forward map F∗ : TM →
TN defined by

(F∗X)q = F∗F−1(q)XF−1(q).

Similarly, if F : M → N is a diffeomorphism and Y is a vector field on
N , we can define a new vector field on M as

(F ∗Y)p = (F∗p)
−1YF (p).

The mapping F ∗ : TN → TM is called the pull back map for F . The
pull back is related to the push forward by the formula F ∗ = (F−1)∗.

Proposition A.1. Let X and Y be smooth vector fields on M and F :
M → N be a smooth map. Then

F∗[X,Y] = [F∗X,F∗Y].

A vector space V (over R) is a Lie algebra if there exists a bilinear
operator V × V → V , denoted [·, ·], satisfying

1. Skew-symmetry: [v, w] = −[w, v] for all v, w ∈ V

407

2. Jacobi identity:

[[v, w], z] + [[z, v], w] + [[w, z], v] = 0

for all v, w, z ∈ V

A subspace W ⊂ V is called a Lie subalgebra if [v, w] ∈ W for all v, w ∈
W . The vector space of all smooth vector fields on a manifold M is an
infinite-dimensional Lie algebra under the Lie bracket operation on vector
fields.

1.5 Differential forms

A smooth differential one-form, on a manifold M is a smooth map α :
M → T ∗M satisfying π ◦ α = id where π : T ∗M → M is the canonical
projection and id : M → M is the identity map. In local coordinates, a
differential form is written as

α(x) = α1(x)dx1 + · · ·+ αn(x)dxn

where each αi is a smooth function on M .
Let F : M → N be a smooth mapping between manifolds and β :

N → T ∗N a smooth differential one-form on N . We can define a new
one-form α : M → T ∗M by

〈αp,Xp〉 = 〈βF (p), F∗pXp〉.

We call α the pull back of β by F and write α = F ∗β. Note that the pull
back of a one-form is defined for any smooth mapping F : M → N , not
just diffeomorphisms.

2 Lie Groups

This section collects some basic concepts of Lie groups which prove to
be useful in robot kinematics and control. A more detailed treatment of
these subjects can be found in Spivak [108]. Explicit formulas for SO(3)
and SE(3) are given by Park and Murray [88].

2.1 Definition and examples

A Lie group is a group G which is also a smooth manifold and for which
the group operations (g, h) 7→ gh and g 7→ g−1 are smooth. A Lie group
is abelian if gh = hg for all g, h ∈ G. We will use the symbol e to denote
the identity element of the group.

For every g ∈ G, we define left translation by g as the map Lg : G→ G
given by Lg(h) = gh for h ∈ G. Similarly, right translation by g is defined

408

as the map Rg : G→ G satisfying Rg(h) = hg. Since Lg ◦ Lh = Lgh and
Rg ◦Rh = Rgh, we have that (Lg)

−1 = Lg−1 and (Rg)
−1 = Rg−1 . Thus,

both Lg and Rg are diffeomorphisms of G for each g. Moreover, left and
right translation commute: Lg ◦ Rh = Rh ◦ Lg. If the group is abelian
then Lg = Rg.

Example A.1. The Euclidean space under addition
The Euclidean space Rn with group operation (x, y) 7→ x+y is an abelian
Lie group. The inverse of x ∈ Rn is denoted −x, and the identity element
is the zero vector. Since x+ y = y + x, such a Lie group is abelian.

Example A.2. The general linear group, GL(n, RRRR)
The group of all n×n nonsingular real matrices is called the general linear
group and denoted GL(n,R). As a manifold, GL(n,R) can be regarded

as an open subset of Rn
2

. For A,B ∈ GL(n,R), the group operation is
matrix multiplication

(A,B) 7→ A ·B
and inversion is given by the matrix inverse. Both operations are smooth
since the formulas for the product and inverse of matrices are smooth in
the matrix components. The identity element is the n×n identity matrix.
Left and right translation are defined as left and right multiplication,
respectively.

Example A.3. The special orthogonal group, SO(n)
The special orthogonal group is a subgroup of the general linear group,
defined as

SO(n) = {R ∈ GL(n,R) : RRT = I,detR = +1}.

The dimension of SO(n) as a manifold is n(n − 1)/2. For n = 3, the
group SO(3) is also referred to as the rotation group on R3.

Example A.4. The special Euclidean group, SE(3)
The group of rigid transformations on R3 is defined as the set of mappings
g : R3 → R3 of the form g(x) = Rx + p, where R ∈ SO(3) and p ∈ R3.
An element of SE(3) is written as (p,R) ∈ SE(3). SE(3) can be identified
with the space of 4× 4 matrices of the form

g =

[
R p
0 1

]
,

where R ∈ SO(3) and p ∈ R3. SE(3) is a Lie group of dimension 6.

2.2 The Lie algebra associated with a Lie group

Let X be a vector field on G. X is left invariant if (Lg)∗X = X, that is

ThLgX(h) = X(gh) for all h ∈ G.

409

Let XL(G) be the set of left invariant vector fields on G. Then, for
X,Y ∈ XL(G) we have

Lg∗[X,Y] = [Lg∗X,Lg∗Y] = [X,Y].

Thus, XL(G) is a Lie subalgebra of the Lie algebra X(G), the set of all
vector fields on G.

For each ξ ∈ TeG, we define a vector field Xξ on G by

Xξ(g) = TeLgξ.

Since
Xξ(gh) = TeLgh · ξ = Te(Lg ◦ Lh) · ξ

= ThLg(TeLh · ξ) = ThLg(Xξ(h)),

Xξ is left invariant. The linear maps ρ1 : XL(G)→ TeG given by

ρ1(X) = X(e)

and ρ2 : TeG→ XL(G) given by

ρ2(ξ) = Xξ

satisfy ρ1 ◦ ρ2 = idTeG and ρ2 ◦ ρ1 = idXL(G). Hence XL(G) and TeG are
isomorphic as vector spaces. Defining a Lie bracket in TeG by

[ξ1, ξ2] = [Xξ1 ,Xξ2](e), ξ1, ξ2 ∈ TeG (A.1)

makes TeG into a Lie algebra. The vector space TeG with this Lie alge-
braic structure is called the Lie algebra of G and is denoted g.

A Lie subalgebra of g is a subspace h ⊂ g such that ξ, η ∈ h implies
that [ξ, η] ∈ h. It can be shown that if H is a Lie subgroup of G with Lie
algebra h, then h is a Lie subalgebra of g.

Example A.5. The Lie algebra of (RRRRn, +)
For the group Rn we have e = 0, T0Rn ∼= Rn, and it is easy to see that
the left invariant vector field defined by v ∈ T0Rn is the constant vector
field: Xv(x) = v for all x ∈ Rn. Therefore, the Lie algebra of Rn is Rn

itself, with the trivial Lie bracket [v1, v2] = 0 for all v1, v2 ∈ Rn.

Example A.6. The Lie algebra of GL(n, R)
The Lie algebra of GL(n,R) is the set of all n×n real matrices, denoted
gl(n,R), with the bracket structure

[A,B] = AB −BA A,B ∈ gl(n,R).

To derive this, note that GL(n,R) is an open subset of Rn×n and hence
TeGL(n,R) ∼= Rn×n. A vector field on GL(n,R) can be written as

X(x) =
∑

i,j

Xij(x)
∂

∂xij

410

where each xij represents a coordinate in Rn×n. One can now proceed
to define left-invariant vector fields on Rn×n (relative to left matrix mul-
tiplication) and compute the Lie bracket from equation (A.1). See [108,
pp. 509–511] for the details of this calculation.

Example A.7. The Lie algebra of SO(3)
The Lie algebra of SO(3), denoted so(3), may be identified with the 3×3
skew-symmetric matrices of the form

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 (A.2)

with the bracket structure

[ω̂1, ω̂2] = ω̂1ω̂2 − ω̂2ω̂1, ω̂1, ω̂2 ∈ so(3).

We can identify so(3) with R3 using the mapping in equation (A.2), which
maps a vector ω ∈ R3 to a matrix ω̂ ∈ so(3). It is straight forward to
show that

[ω̂1, ω̂2] = (ω1 × ω2)
∧, ω1, ω2 ∈ R3.

Thus ω 7→ ω̂ is a Lie algebra isomorphism between the Lie algebra (R3,×)
and the Lie algebra (so(3), [·, ·]).

Example A.8. The Lie algebra of SE(3)
The Lie algebra of SE(3), denoted se(3), can be identified with 4 × 4
matrices of the form

ξ̂ =

[
ω̂ v
0 0

]
ω, v ∈ R3

with the bracket structure [ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1. Let

ξ̂1 =

[
ω̂1 v1
0 0

]
and ξ̂2 =

[
ω̂2 v2
0 0

]
.

Then

[ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1 =

[
(ω1 × ω2)

∧ ω1 × v2 − ω2 × v1
0 0

]
.

The vector space se(3) is isomorphic to R6 via the mapping ξ̂ 7→ ξ =
(v, ω) ∈ R6.

411

2.3 The exponential map

For every ξ ∈ TeG, let φξ : R → G denote the integral curve of the left
invariant vector field Xξ passing through e at t = 0. That is, φξ(0) = e
and d

dtφξ(t) = Xξ(φξ(t)). It follows from its definition that

φξ(s+ t) = φξ(s)φξ(t),

which means that φξ(t) is a one-parameter subgroup of G. Indeed, as
functions of t, both sides are equal at t = 0 and both satisfy the differen-
tial equation σ̇(t) = Xξ(σ(t)) by left invariance of Xξ, so they are equal
by the uniqueness of integral curves. Using either left invariance or the
fact that φξ(t+ s) = φξ(t)φξ(s) shows that φξ(t) is defined for all t ∈ R.

The function exp : TeG → G defined by exp(ξ) = φξ(1) is called the
exponential map of the Lie algebra g into G. The exponential map takes
the line ξs ∈ g, s ∈ R, into a one-parameter subgroup of G, i.e.,

exp(ξs) = φξ(s).

To verify this formula, note that for fixed s, the curve t 7→ φξ(ts) which
at t = 0 passes through e, satisfies the differential equation

d

dt
φξ(ts) = sXξ(φξ(ts)) = Xsξ(φsξ(t)).

Since φsξ(t) and φξ(ts) satisfy the same differential equation and both
pass through e at t = 0, it follows that φsξ(t) = φξ(ts). Putting t = 1
yields exp(ξs) = φξ(s). In fact, all connected one-parameter subgroups
of G are obtained in this way.

Differentiating the map exp(ξs) = φξ(s) with respect to s at s = 0
shows that Te exp = idTeG. Therefore, by the inverse function theorem,
exp : g → G is a local diffeomorphism from a neighborhood of zero in g

onto a neighborhood of e in G. If G is compact it can be shown that the
exponential map is surjective.

Example A.9. The exponential map on (RRRRn, +)
Consider Rn with addition as the group operation. The Lie algebra of
Rn is Rn with the trivial bracket and the integral curve of a left invariant
vector field Xv(x) = v is given by φv(t) = vt. Thus, φv(t) ◦ x = x + vt
and exp : Rn → Rn is the identity.

Example A.10. The exponential map on GL(n, RRRR)
Let G = GL(n,R) ⊂ Rn×n so that g = gl(n,R) = Rn×n with [A,B] =
AB − BA. For every A ∈ gl(n,R), the mapping ΦA : R → GL(n,R)
given by

ΦA(t) =

∞∑

n=0

tnAn

n!

412

is a one-parameter subgroup because ΦA(0) = I and

d

dt
ΦA(t) =

∞∑

n=1

tn−1An

(n− 1)!
= ΦA(t)A,

which shows that ΦA is an integral curve of the left invariant vector field
XA. Therefore, the exponential map exp : gl(n,R) → GL(n,R) is given
by

exp(A) = ΦA(1) =

∞∑

n=0

An

n!
.

Example A.11. The exponential map on SO(3)
Let G = SO(3). It was shown in Chapter 2 that exp ω̂ corresponds to a
rotation about the vector ω ∈ R3 by an angle ‖ω‖. An explicit formula
is given by Rodrigues’s formula:

ebω = I +
ω̂

‖ω‖ sin ‖ω‖+
ω̂2

‖ω‖2
(
1− cos ‖ω‖

)
. (A.3)

Example A.12. The exponential map on SE(3)
For G = SE(3), the Lie algebra can be identified with 4 × 4 matrices of
the form

ξ̂ =

[
ω̂ v
0 0

]
, ω, v ∈ R3,

with [ξ̂1, ξ̂2] = ξ̂1ξ̂2 − ξ̂2ξ̂1. The exponential map is given by

exp ξ̂ =

[
I v
0 1

]
, ω = 0 and exp ξ̂ =

[
ebω Av
0 1

]
, ω 6= 0,

where

A = I +
ω̂

‖ω‖2 (1− cos ‖ω‖) +
ω̂2

‖ω‖3 (‖ω‖ − sin ‖ω‖).

The exponential map exp : g→ G defined by exp(ξ) = φξ(1), is a local
diffeomorphism from a neighborhood of zero in g onto a neighborhood
of e in G. Thus, restricted to a small neighborhood U of e there is a
function log : U → g such that exp ◦ log(g) = g for all g ∈ U . The
function log : U ⊂ G → g is the inverse of exp : g → G. For the general
linear group, it can be computed explicitly.

Example A.13. Log function on GL(n, RRRR)
Let G = GL(n,R) and A ∈ G. Then, the log function is defined by the
following matrix polynominal

logA =
∞∑

n=1

(−1)n+1 (A− I)n
n

,

which converges for all ‖A− I‖ < 1.

413

Example A.14. Log function on SO(3)
Let G = SO(3). Then the log function is given by logR = â = θω̂, where
θ ∈ R and ω̂ ∈ se(3) are given by

2 cos θ + 1 = trace(R) and ω̂ =
1

2 sin θ
(R−RT) R 6= I.

When R = I, θ = 2πk for any integer k and ω can be chosen arbitrarily.
Note that the log function on SO(3) is multi-valued since θ is not unique.

Example A.15. Log function on SE(3)
The log function on SE(3) is given by

ξ̂ = log

[
R p
0 1

]
=

[
ω̂ A−1p
0 0

]
,

where ω̂ = logR and

A−1 = I − 1

2
ω̂ +

2 sin ‖ω‖ − ‖ω‖(1 + cos ‖ω‖)
2‖ω‖2 sin ‖ω‖ ω̂2 ω 6= 0.

If ω = 0 then A = I. The log function on SE(3) is multi-valued since ω
is not unique.

2.4 Canonical coordinates on a Lie group

Since exp : g→ G is a local diffeomorphism, we can use the exponential
map to define local coordinates for G. Let {X1, . . . ,Xn} be a basis of g.
The mapping

g = exp(X1σ1 + · · ·+Xnσn) (A.4)

defines a local diffeomorphism between the real numbers σ ∈ Rn and
g ∈ G for g sufficiently near the identity. Hence we can consider σ as
a coordinate mapping, σ : U → Rn, where U ⊂ G is an arbitrarily
small neighborhood of the origin. Using this coordinate chart and left
translation, we can construct an entire atlas for the Lie group G. Define
a chart (Ug, ψg) about g ∈ G by letting

Ug = Lg(U) = {Lgh|h ∈ U}

and defining ψg = σ ◦ Lg−1 : Ug → Rn, so that

ψg(h) = σ(g−1h).

It is not difficult to show that the set of charts {(Ug, ψg)} indeed forms
an atlas for G. The functions (σ1, . . . , σn) defined in equation (A.4)
are called canonical coordinates of the first kind around the identity and
relative to the basis {X1, . . . ,Xn}.

414

If we write

g = expX1θ1 expX2θ2 · · · expXnθn (A.5)

for g near the identity, then the functions (θ1, θ2, . . . , θn) are called the
canonical coordinates of the second kind. Examples of such coordinates
are the product of exponentials formula studied in Chapter 3, and the
Euler angle parameterizations of the rotation group.

2.5 Actions of Lie groups

In Chapter 2 we transformed points, vectors, twists, and wrenches using
matrix multiplication with either g or some form of Adg. All of these
transformations can be described as the left action of SE(3) on an appro-
priate space. In this section, we give the definition of a left action of a Lie
group on a manifold and give several examples related to robot kinemat-
ics. More specific examples which make connections with the material in
Chapter 2 are presented in the next section.

Let M be a smooth manifold and G a Lie group. A left action of G
on M is a smooth map Φ : G×M →M such that

(i) Φ(e, x) = x for all x ∈M
(ii) For every g, h ∈ G and x ∈M , Φ(g,Φ(h, x)) = Φ(gh, x)

We will often write Φg(x) for Φ(g, x). If Φ is an action of G on M and
x ∈M , the orbit of x is defined by

Orbx = {Φg(x) : g ∈ G}.
Example A.16. Action of GL(n, RRRR) on RRRRn

GL(n,R) acts on Rn by (A, x) 7→ Ax. The orbit of x 6= 0 is the open set
Rn/{0}.
Example A.17. Action of G on itself via conjugation
The map Ig : G → G given by Ig(h) = Rg−1Lg(h) = ghg−1 is called the
conjugation map or the inner automorphism associated with g. The map
Ig defines a left action on G since Ie = id and

Ig ◦ Ih(x) = ghxh−1g−1 = Igh(x).

Orbits of this action are called similarity classes.

Example A.18. Adjoint action of G on its Lie algebra
Differentiating the conjugation map Ig at e, we get the adjoint action of
G on g, Ad : G× g→ g defined as

Adg(ξ) = (TeIg)ξ = Te(R
−1
g ◦ Lg)ξ.

If G is a subgroup of GL(n,R) then g ⊂ Rn×n and Adg ξ = gξg−1 for
ξ ∈ g.

415

Example A.19. Coadjoint action of G on the dual of its Lie
algebra
The coadjoint action of G on g∗, the dual of the Lie algebra g of G, is
defined as follows. Let Ad∗

g : g∗ → g∗ be the dual of Adg defined by

〈Ad∗
g α, ξ〉 = 〈α,Adg ξ〉

for α ∈ g∗ and ξ ∈ g. Then the map Φ∗ : G× g∗ → g∗ given by

Φ∗(g, α) = Ad∗
g−1 α

is the coadjoint action of G on g∗.

Example A.20. Lifted action of G from M to TM

Let Φ : G ×M → M be an action of G on M , where Φg : M → M is
defined by Φg(x) = Φ(g, x). One can lift this action to an action on TM ,
Φ∗ : G× TM → TM , defined by

Φ∗(g, (x, vx)) = (Φg(x), TxΦg · vx).

Φ∗ is called the lifted action of G on TM .

3 The Geometry of the Euclidean Group

In this section we study the geometric properties of the Euclidean group
and discuss their implications on robot kinematics and control. The
material in this section is based in part on the dissertation of Loncaric [63]
and also on the work of the authors [59, 77, 86].

3.1 Basic properties

In Chapter 2 we presented the theory of rigid body motion and showed
its connections with homogeneous matrices and the theory of screws. We
now show that the various tools available in the study of rigid motion are
special cases of the more general tools defined for general Lie groups.

Rigid body kinematics

The configuration of a rigid body with respect to some reference config-
uration is described by an element g = (p,R) ∈ SE(3). If A is a fixed
coordinate frame and B a frame attached to the rigid body, then we
write gab = (pab, Rab) ∈ SE(3) to denote the configuration of B with
respect to A. pab represents the location of the origin of the B frame and
Rab ∈ SO(3) its orientation. The group operation on SE(3) allows us to
determine the configuration of a frame C relative to A via an intermediate
frame B:

gac = gab · gbc = (pab +Rabpbc, RabRbc).

416

If we represent g ∈ SE(3) as a 4× 4 homogeneous matrix,

g =

[
R p
0 1

]
,

then the group operation is given by matrix multiplication and we may
regard SE(3) as a subgroup of the general linear group, GL(4,R).

The configuration gab ∈ SE(3) can also be interpreted as a mapping
from the coordinates of a point written relative to the B frame into the
coordinates of the same point written relative to the A frame. Formally,
this defines an action of SE(3) on R3 given by Φg(q) = p + Rq. In
homogeneous coordinates this action can be written as

[
qa
1

]
=

[
Rab pab
0 1

] [
qb
1

]
.

It follows from associativity of matrix multiplication that this actually
defines an action of SE(3) on R3. The use of a 1 in the last row of the
homogeneous representation for a point allows the action of SE(3) on
points to be represented as multiplication between a matrix and a vector.

The action of SE(3) on vectors describes how the velocity of a point
is mapped from one coordinate frame to another. Formally, we represent
the velocity of a point as an element of TxR

3 and the action of SE(3) on
tangent vectors (velocities) is the lifted action of SE(3) on M = R3. The
lifted action of SE(3) on TR3 is given by Φg∗(vq) = (g(q), Rvq) where
g(q) denotes the action of g on the point q. In homogeneous coordinates,
the tangent space (velocity) portion of the action can be written as

[
va
0

]
=

[
Rab pab
0 1

] [
vb
0

]
.

By defining the homogeneous representation of a vector to have a zero in
the bottom row, we are able to once again use multiplication of a matrix
and a vector to represent the action.

Since SE(3) is a Lie group, the exponential map can be used to map
elements of the Lie algebra into the group. In homogeneous coordinates,
the Lie algebra of SE(3) is a Lie subalgebra of gl(4,R) consisting of ma-
trices of the form

ξ̂ =

[
ω̂ v
0 0

]
ω̂ ∈ so(3), v ∈ R3,

with the Lie bracket given by the matrix commutator. We call an element
of the Lie algebra se(3) a twist. The vector space se(3) has dimension 6

and is isomorphic to R6 via the mapping ξ̂ 7→ ξ = (ω, v).
A twist can be interpreted geometrically using the theory of screws.

Consider the motion generated by simultaneously rotating and translat-
ing about an axis in the direction ω ∈ R3 going through a point q ∈ R3.

417

Let h represent the ratio of translational motion to rotational motion. If
h is finite, then the resulting rigid motion is the exponential of the twist
ξ̂ ∈ se(3) given by

ξ̂ =

[
ω̂ −q × ω + hω
0 0

]
.

The one-parameter subgroup φbξ(θ) = exp(ξ̂θ) generated by this twist
corresponds to a rotation about an axis followed by translation along that
same axis. Thus the exponential of a twist generates a screw motion.

It follows from the general properties of the exponential map that,
near the identity, any element of SE(3) can be written as the exponential
of some twist. For SE(3) it can be shown that the exponential map is
actually surjective and hence any rigid transformation can be written
as the exponential of some twist. This statement may be regarded as
a restatement of Chasles’ theorem, which states that every rigid motion
can be realized as a screw motion.

Although every rigid motion can be written as the exponential of a
twist, the set of twists do not define a parameterization for SE(3). The
exponential map is not injective, and hence there may be many twists
which give the same rigid motion. One example of this is a pure rotation,
which can be written as either a rotation about an axis ω by an angle θ
or a rotation about an axis −ω by an angle 2π − θ. These two different
twists give the same motion.

Velocities and forces

If c(t) ∈ M is a curve on a manifold, then the velocity of that curve is
an element of the tangent space to M at c(t), i.e., ċ(t) ∈ Tc(t)M . If M
happens to be a Lie group, then the tangent space TgG is isomorphic
to TeG. Hence, by left translation, we can identify the instantaneous
velocity of a trajectory on a Lie group with an unique element of the
corresponding Lie algebra.

Returning to SE(3), there are two ways to map TgSE(3) to TeSE(3)—
left and right translation. Consider left translation first. We make use
of the fact that since SE(3) can be viewed as a matrix Lie group (using
homogeneous coordinates), so the tangent map to Lh : SE(3)→ SE(3) is
given by matrix multiplication:

TgLhXg = hXg,

where Xg ∈ TgSE(3). To show this relationship, let g(t) ∈ SE(3) be a
curve which is tangent to Xg at time t = 0. Then from the definition of
the tangent map,

TgLhġ(0) =
d

dt
(Lh ◦ g(t))|t=0 = hġ(0).

418

q(0)A

B

B

gab(0)

gab(t)

q(t)

qb

Figure A.1: Trajectory of a rigid body relative to a fixed frame.

Letting h = g−1 we see that, using left translation, the velocity of the
rigid body can be shifted to the identity and written as a twist

V̂ b = g−1ġ.

This is precisely the body velocity that was defined in Chapter 2.
If we use right translation to map a velocity ġ ∈ TgSE(3) to the

tangent space at the identity, the resulting quantity is the spatial velocity:

V̂ s = ġg−1.

The derivation of this formula follows exactly as in the body velocity
case, replacing Lh with Rh.

One reason for the terminology “body” velocity and “spatial” velocity
becomes clear if we consider the action of twists on points. Let q ∈ R3

be a point attached to a rigid body and let gab(t) ∈ SE(3) describe the
trajectory of a frame B attached to the rigid body relative to a fixed
reference frame A, as shown in Figure A.1. In homogeneous coordinates,
the trajectory of the point q as a function of time can be written as

qa(t) = gab(t)qb,

where qa and qb are the coordinates of the point relative to the A and B
frames. The velocity of the point, relative to the A frame, is given by

va(t) = q̇a(t) = ġab(t)qb, (A.6)

where we have used the fact that qb is constant since the point is fixed
in the body frame. Thus, ġab(t) ∈ TgSE(3) can be viewed as a mapping

419

between the body coordinates of a point and the spatial velocity of that
same point.

A more appealing representation of velocity is one which does not
require switching between coordinate frames. That is, suppose we wish
to find the relationship between the coordinates of a point and its velocity,
when both quantities are specified with respect to a single frame. We can
accomplish this by transforming either the coordinates of the point or the
coordinates of velocity to the appropriate frame. For example, if we are
given the coordinates of the point q with respect to the spatial frame A,
then the velocity of q with respect to A is given by

va = ġqb = (ġg−1)qa.

This is precisely the spatial velocity that is defined by using right transla-
tion to pull back the velocity ġ ∈ TgSE(3) to TeSE(3). A similar argument
shows that the body velocity, g−1ġ can be viewed as a map from the body
coordinates of a point to the body velocity of that point.

The body and spatial velocities are physically interpreted as the in-
stantaneous translational and rotational velocity written relative to the
body or spatial frame, respectively. They are related to one another by
the adjoint action of SE(3) on se(3). Namely, if V̂ b is the body velocity
for a rigid motion g(t), then the spatial velocity is given by

V̂ s = Adg V̂
b.

This relationship can be derived by direct calculation, as in Chapter 2.
A generalized force on SE(3) can be regarded as a covector on SE(3);

i.e., an element of T ∗
g SE(3). As with velocities, we can map the cotan-

gent space T ∗
g SE(3) onto the dual of the Lie algebra by either left or

right translation. We call the resulting object a wrench. Left translation
corresponds to representing the force in the body coordinate frame while
right translation corresponds to representing it in the spatial coordinate
frame. The natural action of a wrench on a twist gives the instantaneous
work due to applying the given wrench along the infinitesimal motion
generated by the twist.

If we identify se(3)∗ with R6, then a wrench can be written as

F =

[
f
τ

]
,

where f is the translation component of the force and τ is the angular
component. The natural action of a wrench on a twist becomes the
inner product between F ∈ R6 and V ∈ R6. It is important to keep in
mind, however, that this action is the natural action of a covector on a
vector, and is defined independently of any inner product structure on
R6 ∼= se(3).

420

Although wrenches are dual to twists, we choose to represent them
slightly differently. We always represent a wrench on SE(3) as a vector
in R6 since the matrix representation of a wrench does not prove to
be particularly useful. Furthermore, we write a wrench using a single
subscript to denote the frame with respect to which it is written. Thus,
if A is an inertial reference frame and B is a frame attached to a rigid
body, we write Fa for the spatial representation of a wrench applied to
the rigid body and Fb for the body representation of the wrench. In
taking the action of a wrench on a twist, one must always insure that the
twist and the wrench are represented relative to the same frame. Thus
the instantaneous work generated by a twist V and a wrench F can be
written either as V sab · Fa or V bab · Fb.

Transformation laws

Let V sbc ∈ R6 be the spatial velocity of a frame C relative to an inertial
frame B and suppose that we wish to know the spatial velocity with
respect to a different inertial frame, A. Using the definition of the spatial
velocity, we have

V̂ sac = ġac g
−1
ac = gab ġbc g

−1
bc g

−1
ab

= gab V̂
s
bc g

−1
ab = Adgab

V̂ sbc,

and hence the velocity of the rigid body is transformed according to the
adjoint action of SE(3) on se(3). If we represent the velocities as vectors
in R6 then we write V sac = Adgab

V sbc where Adg : R6 → R6 is the matrix

Adg =

[
R p̂R
0 R

]
.

Note that here we use the symbol Adg to represent the adjoint mapping
both on se(3) ⊂ R4×4 and on R6, which is isomorphic to se(3).

Suppose instead that we change the body coordinate frame. Let gab
represent the configuration of the frame B relative to A and let gbc repre-
sent a fixed transformation corresponding to a new choice of body frame.
The spatial velocity of C with respect to A is given by

V̂ sac = ġacg
−1
ac = ġabgbcg

−1
bc g

−1
ab = V̂ sab.

Thus, changing the body coordinate frame does not affect the spatial
velocity of the object.

Similar relationships can be derived for body velocities. Changing
the spatial coordinate frame does not affect the body velocity of a rigid
object. However, if gab represents the motion of the rigid body with
respect to the frame A and gbc represents a new choice of body frame,
then

V̂ bac = Adg−1
bc
V̂ bab.

421

Thus the adjoint action of SE(3) on se(3) represents the effect of a change
of body frame on the body velocity.

The transformations described above assume that new and old body
or spatial coordinate frames have a fixed relative configuration. If we
are given two rigid motions gab(t) and gbc(t), then in order to compute
the velocity of frame C relative to frame A, we must add the velocities
between the frames. This addition must occur in a single coordinate
frame, and hence we use the adjoint mapping to transform the velocities
appropriately. For example, the spatial velocity between frames A and C
is given by

V sac = V sab + Adgab
V sbc.

The adjoint mapping in the second term converts the instantaneous ve-
locity V sbc, which is written in the coordinates of frame B, into an instan-
taneous velocity written relative to frame A.

The coadjoint action is used to model the transformation of wrenches.
If Fa ∈ R6 ∼= se(3)∗ is a wrench written relative to a fixed frame A, then
the coordinates of the wrench relative to a new fixed frame, B, are given
by

Fb = AdT
g−1

ab

Fa

where gab is the configuration of frame B relative to A. This expression
follows directly from the definition of the coadjoint action given in the
previous section.

3.2 Metric properties of SE(3)

Since the Lie algebra of SE(3) can be identified with R6, there is an
inner product structure on se(3) induced by the usual inner product on
R6. However, it turns out that this inner product is not invariant under
change of coordinate frame and hence can be misleading. Suppose, for
example, that we are given two twists ξ1 ∈ R6 and ξ2 ∈ R6 that satisfy
ξ1 · ξ2 = 0. If we transform the coordinate frame with respect to which
the twists are written, then the twists transform as ξ′i = Adg ξi, where
g ∈ SE(3) represents the change of frame. The inner product between
the twists in the new coordinate frame is given by

ξ′1 · ξ′2 = ξT1

[
RT 0
−RT p̂ RT

] [
R p̂R
0 R

]
ξ2 = ξT1

[
I RT p̂R

−RT p̂R I −RT p̂2R

]
ξ2.

If p 6= 0, then the dot product is not preserved and hence two twists
which are orthogonal relative to one choice of coordinate frame may not
be orthogonal relative to a different choice of frame.

This lack of frame independence has caused some confusion in the
robotics literature, due to incorrect use of the inner product on R6 as an
inner product in se(3). In this section we show that there is no inner

422

product structure on se(3) which is invariant under change of coordinate
frame. The implications of this fact are also discussed.

Invariant metrics on RRRR
n

Consider first the Euclidean space Rn. A metric Ψ on Rn is a bilinear
function Ψ : Rn × Rn → R such that

1. Ψ is symmetric: Ψ(v, w) = Ψ(w, v), for all v, w ∈ Rn.

2. Ψ is positive-definite: Ψ(v, v) ≥ 0 and Ψ(v, v) = 0 if and only if
v = 0.

Let {e1, . . . , en} be an orthonormal basis of Rn (note that such a basis
defines a Cartesian coordinate frame in Rn). With respect to this basis
Ψ has the matrix representation

Ψij = Ψ(ei, ej), i, j = 1, . . . , n.

From now on, we will use Ψ to represent both the mapping and its matrix
representation. Thus Ψ(v, w) = vTΨw.

Because a metric is positive definite, the matrix representation of a
metric is always invertible. We will occasionally be interested in sym-
metric bilinear mappings which have invertible matrix representations,
but are not positive definite. A bilinear function Ψ : Rn × Rn → R is
nondegenerate if Ψ(v, w) = 0 for all w ∈ Rn implies that v = 0. We
call a bilinear mapping which is symmetric and nondegenerate, but not
necessarily positive-definite, a pseudo-metric.

Let va be the representation of a vector in frame A and vb be the
representation of the same vector in frame B. These vectors are related
by the lifted action of SE(n) on Rn and hence

va = Rabvb, (A.7)

where gab = (pab, Rab) ∈ SE(n) is the position and orientation of B
relative to A. A metric is said to be invariant under change of coordinate
frames if

Ψ(Rv1, Rv2) = Ψ(v1, v2) ∀v1, v2 ∈ Rn, R ∈ SO(n). (A.8)

Equation (A.8) yields the following constraint on the matrix representa-
tion of Ψ:

ΨR = RΨ ∀R ∈ SO(n). (A.9)

Lemma A.2. Let Ψ ∈ Rn×n be a symmetric matrix which satisfies equa-
tion (A.9) for all R ∈ SO(n) (i.e., Ψ commutes with all n × n rotation
matrices). Then

Ψ = αI

for some α ∈ R.

423

Proof. Let v be a unit eigenvector for Ψ with eigenvalue λ. Multiplying
both sides of equation (A.9) by v, we have

ΨRv = RΨv = λRv.

It follows that Rv is an eigenvector of Ψ for any R ∈ SO(n) and hence
Ψw = λw for any unit vector w ∈ Rn. This is only possible if Ψ is a
scalar times the identity matrix.

The scalar α corresponds to a choice of length scale on Rn. In the case
of R3, a length scale assigns a physical unit such as “meters” or “feet” to
a unit vector in R3. Once a fixed length scale is chosen, there is a unique
metric on R3 which is invariant under change of coordinate frames.

Proposition A.3. Invariant metrics on RRRR
n

Up to a choice of length scale, the Euclidean space Rn has a unique posi-
tive definite metric which is invariant under change of coordinate frames.

Invariant metrics on SE(3)

A natural question that follows from the preceding discussion is whether
SE(3) also supports a metric that is invariant under change of coordinate
frames. If so, we can associate a length measure to twists, generalizing the
notion of speed in R3 to se(3). Since SE(3) is not a Euclidean space, but
a manifold, we need to define what we mean by a metric on a manifold.

Let M be a manifold. A quadratic form Ψ on M is a bilinear mapping
Ψx : TxM × TxM → R which is symmetric for all x and varies smoothly
with x. If Ψ is positive definite then we call Ψ a metric. If Ψ is non-
degenerate but not positive-definite, we say that Ψ is a pseudo-metric.
Let F : M →M be a smooth map. The pull back of a quadratic form Ψ
by F is also a quadratic form, denoted F ∗Ψ defined by

F ∗Ψx(vx, wx) = ΨF (x)(TxF vx, TxF wx), vx, wx ∈ TxM.

Ψ is said to be F -invariant if F ∗Ψ = Ψ.
To define a metric on a Lie group, we may first define it at the identity

and then translate it to the whole group by either left or right translation.
The resulting metric is automatically left or right invariant, respectively.
However, a left invariant metric may not be right invariant and vice versa.
A metric that is both left and right invariant is called bi-invariant. Let
Ih : SE(3)→ SE(3) be the conjugation map

Ih(g) = hgh−1.

Since Ih = Rh−1 ◦ Lh, a metric Ψ is bi-invariant if and only if it is Ih-
invariant for all h ∈ SE(3). That is, we require that a bi-invariant metric
satisfy

I∗hΨ = Ψ, ∀h ∈ SE(3).

424

These same definitions hold for any quadratic form on SE(3), even if it
is not positive definite.

Lemma A.4. Let Ψ be a left (or right) invariant quadratic form on
SE(3). Then Ψ is Ih-invariant if and only if it is Ih-invariant at the
identity, i.e.,

Ψe(ξ̂, η̂) = Ψe(Adh ξ̂,Adh η̂)

for all h ∈ SE(3) and ξ̂, η̂ ∈ se(3).

Proof. The proof of necessity is immediate. To prove sufficiency, we only
need to show that Ψ is right invariant since Ih = Rh−1 ◦ Lh. For this,
observe the following equations, which hold for all ξ̂, η̂ ∈ se(3) and h ∈
SE(3):

Ψe(ξ̂, η̂) = Ψe(TeIhξ̂, TeIhη̂)

= Ψe(Te(Lh ◦Rh−1)ξ̂, Te(Lh ◦Rh−1)η̂)

= Ψe(Th−1Lh ◦ TeRh−1 ξ̂, Th−1Lh ◦ TeRh−1 η̂)

= Ψh−1(TeRh−1 ξ̂, TeRh−1 η̂).

Here, the first equation follows from Ψ being Ih-invariant at the identity,
and the last equation follows from left invariance of Ψ. This shows that
Ψ is right invariant and hence bi-invariant.

Proposition A.5. Bi-invariant quadratic forms on SE(3)
Let Ψ be a left invariant quadratic form on SE(3), where we identify se(3)
with R6. Then Ψ is bi-invariant if and only if the matrix representation
of Ψ at e has the form

Ψe =

[
0 βI
βI γI

]
, β, γ ∈ R.

Proof. By Lemma A.4, Ψ is bi-invariant if and only if for all ξ̂, η̂ ∈ se(3)
and h ∈ SE(3),

Ψe(TeIhξ̂, TeIhη̂) = Ψe(ξ̂, η̂). (A.10)

Identifying se(3) with R6 and representing Ψe by the matrix

Ψe =

[
A B
BT C

]
,

where A,B,C ∈ R3×3 and A,C are symmetric, we have from equa-
tion (A.10) that

[
A B
BT C

]
= AdTh

[
A B
BT C

]
Adh, ∀h ∈ SE(3). (A.11)

425

Using the definition of the adjoint mapping on R6,

Adh =

[
R p̂R
0 R

]
,

equation (A.11) becomes

A = RTAR

B = RTAp̂R+RTBR

C = −RT p̂Ap̂R−RT p̂BR+RTBT p̂R+RTCR.

(A.12)

By Lemma A.2, A in equation (A.12) must be of the form

A = αI, α ∈ R.

Since (A.12) holds for all h ∈ SE(3), by letting p = 0 in the second and
third equations we obtain

B = βI C = γI β, γ ∈ R.

Finally, using B = βI and C = γI in the third equation of (A.12), we
conclude that α = 0 and the theorem is proven.

Among the set of bi-invariant quadratic forms, we have the following
two special cases.

Example A.21. Hyperbolic metric on SE(3): (β = 1, γ = 0)
The quadratic form whose matrix representation given by

〈
[
v1
ω1

]
,

[
v2
ω2

]
〉H = (vT1 ω2 + vT2 ω1) (A.13)

is called the hyperbolic metric on SE(3). The eigenvalues of the matrix
representation of 〈·, ·〉H are all ±1 and occur pairwise. Hence it is possible
for a vector to have negative “length” with respect to the hyperbolic
metric.

The choice of a hyperbolic metric on SE(3) depends on a choice of
length scale on R6. This is clear from the formula in equation (A.13),
where a change of length scale results in a linear factor in the hyperbolic
metric. Thus, the choice of a particular hyperbolic metric fixes the ratio
between a unit translation vector and a unit rotation vector.

Although it is not positive definite, the hyperbolic metric is non-
degenerate and hence it defines a pseudo-metric on SE(3). In fact, 〈·, ·〉H
coincides with the reciprocal product defined in Chapter 2. The hyper-
bolic metric is a special case of the Klein form, which can be defined on
any Lie group [13].

426

Example A.22. Killing form on SE(3): (β = 0, γ = −4)
The quadratic form given by

〈
[
v1
ω1

]
,

[
v2
ω2

]
〉K = −4ωT1 ω2 (A.14)

is called the Killing form on SE(3). It is degenerate, and hence defines
neither a metric nor a pseudo-metric. The Killing form on SE(3) does
not depend on the choice of length scale.

The Killing form on SE(3) is a special case of the Killing form for a
general Lie group, defined as

〈ξ1, ξ2〉K = trace(ad bξ1 · ad bξ2),

where adbξ : g → g : η̂ 7→ [ξ̂, η̂]. The factor of −4 in equation (A.14) was
chosen to make it agree with the general definition.

Observe that in neither of the above cases is the quadratic form pos-
itive definite. In fact, it is easy to see that for any bi-invariant metric
Ψ((v, 0), (v, 0)) = 0. Hence we have the following:

Corollary A.5.1. Lack of a bi-invariant metric on SE(3)
There does not exist a bi-invariant (positive-definite) metric on SE(3).

The fact that a bi-invariant metric does not exist on SE(3) does not
mean that one cannot define a notion of length on SE(3). Rather, it
implies that the definition of a metric is not intrinsic. It involves a choice.
If we restrict ourselves to metrics which are defined at the identity and
extended to the entire group via left (or right) translation, we have the
following characterization:

Proposition A.6. Left invariant metrics on SE(3)
The set of all left- (or right-) invariant metrics on SE(3) are parame-
terized by the choice of reference frame origin and the choice of length
scale.

A proof of this proposition can be found in [63]. The need for a choice
of reference frame origin follows from the lack of a bi-invariant metric on
SE(3). The choice of length scale affects how translational motion and
rotational motion are weighted in the metric.

We discuss some implications of the preceding results on robot kine-
matics and control in the following examples.

Example A.23. Geometric attributes of twists
Let ξ = (v, ω) be a twist with ω 6= 0 (the exponential of such a twist is
referred to as a proper screw motion). The magnitude Mξ and pitch hξ of

427

the twist, as defined in Chapter 2, can be re-interpreted using the Killing
form and the hyperbolic metric as follows:

Mξ = −1

4
〈ξ, ξ〉K and hξ = −2

〈ξ, ξ〉H
〈ξ, ξ〉K

.

Thus, both quantities are coordinate-frame independent attributes of a
twist with nonzero angular component.

The pitch of a screw obviously depends on the choice of length scale
since it is defined as the ratio of translational and rotational motion. This
extra freedom is reflected in the choice of length scale which is required
for the hyperbolic metric.

Example A.24. Constraints on SE(3) and hybrid force control
Consider the hybrid control problem, in which a manipulator pushes
against a surface in R3. This surface can be described as a set of holo-
nomic constraints of the form

fi(g) = 0 i = 1, . . . , k,

where each fi : SE(3) → R is a smooth function. Differentiating this
position constraint with respect to time, we get a constraint on ġ ∈
TgSE(3):

dfi(g)ġ = 〈dfi(g), ġ〉 = 0, (A.15)

where dfi(g) ∈ T ∗
g SE(3) and ġ ∈ TgSE(3). This constraint can be trans-

lated back to the identity using left (or right) translation,

〈dfi(g), ġ〉 = 〈(dfi(g), (Lg)∗(Lg−1)∗ġ〉
= 〈L∗

gdf(g), (Lg−1)∗ġ〉
= 〈L∗

gdfi(g), ξ̂ 〉 = 0,

where ξ̂ = g−1ġ ∈ se(3) and L∗
gdfi(g) ∈ se(3)∗.

The quantity L∗
gdfi(g) is an element of se(3)∗, the dual of the Lie

algebra, and hence we can interpret it as a force. The subspace of se(3)∗

spanned by L∗
gdf1, . . . , L

∗
gdfk is called the space of constraint forces, and

the subspace of se(3) annihilated by L∗
gdfi, i = 1, . . . ,m, is called the

space of free motions. These subspaces annihilate each other since any
constraint force acting on a free motion gives zero instantaneous work.
Although the subspaces themselves are not invariant under change of
coordinates, it is always true that these subspaces will annihilate each
other, independent of the choice of frames used to represent the problem.

A common mistake in the robotics literature is to treat the constraint
directions as twists. In this case, one tries to define the action of a
constraint force on a velocity as the usual dot product on R6. Constraint
forces are then identified with those twists that are orthogonal to the

428

space of free motions. However, this description is not frame invariant.
If we change the frames which are used to describe the problem, the space
of constraint twists may no longer be orthogonal to the free motions. This
is because there is no invariant metric on SE(3) and hence there is no
invariant notion of orthogonality.

This apparent problem is completely due to associating the constraint
directions with vectors instead of covectors. The proper way to describe
a constraint is as an element of the dual of the Lie algebra. In this case,
if we shift coordinate frames, then a twist V ∈ R6 ∼= se(3) and a wrench
F ∈ R6 ∼= se(3)∗ will transform according to

V ′ = Adg V and F ′ = AdTg−1 F.

The action of the new twist on the new wrench is given by

F ′ · V ′ = (F ′)T Adg−1 Adg V = F · V.

Note that the action of a wrench on a twist also scales correctly with
respect to a change of length scale. So a wrench which annihilates a twist
does so independently of the units in which length is described.

Example A.25. Left invariant constraints
The constraints described in the previous example generate a subspace
of twists and wrenches which annihilate each other. These subspaces
are defined on the Lie algebra and its dual, but they may vary as the
manipulator moves along the constraint surface. That is, the constraint
df(g) ∈ T ∗

g SE(3) pulled back to the identity, L∗
gdf(g) ∈ T ∗

e SE(3), may
depend on g ∈ SE(3).

A constraint is said to be left invariant if L∗
gdf(g) = df(e). In other

words, a left invariant constraint gives directions of free motion which
are constant relative to a body fixed frame. Left invariant constraints
arise frequently in applications, for example when moving across a flat
surface. The following result, due to Loncaric [63] asserts that all left (or
right) invariant constraints can be characterized in terms of subgroups of
SE(3).

Proposition A.7 (Loncaric). A constraint f(g) = 0 is left (or right)
invariant if and only if f−1(0) is a subgroup of SE(3).

Example A.26. Manipulability measures
In Chapter 3, we defined several manipulability measures based on prop-
erties of the manipulator Jacobian. Some of these manipulability mea-
sures rely on the Euclidean metric on R6 ∼= se(3), which we now know is
not invariant under change of coordinate frames. Thus, care should be
exercised when one applies these manipulability measures to manipulator
design and control.

429

To illustrate our point, let us place two tool frames T1 and T2 at
the end-effector of a robot and then write down the (body) manipulator
Jacobian at a joint position θ. Let J1(θ) and J2(θ) be the representa-
tion of the body manipulator Jacobian with respect to frame T1 and T2,
respectively. Then, we have

J1(θ) = Adh J2(θ),

where h ∈ SE(3) is the position and orientation of T2 relative to T1. Since
Adh does not preserve the Euclidean metric, we have in general

σmin(J1(θ)) 6= σmin(J2(θ)).

Furthermore, the point in the joint space at which the minimum singular
value of J1 is achieved could be different from that of J2. This shows that
manipulator design based on maximizing the minimum singular value of
J is ill-posed, as the result depends on placement of the body coordinate
frames.

A similar result holds for the condition number.

3.3 Volume forms on SE(3)

In the last section we saw that there does not exist a bi-invariant metric on
SE(3) and hence the definition of the length of a curve on SE(3) depends
on the choice of a reference frame and a length scale. One would like
to know to what extent the choice of a reference frame and length scale
affects the definition of volume on SE(3). This is important, for example,
when talking about the size of the workspace of a robot manipulator,
which is a compact subset of SE(3). We begin with a very brief review
of the definition of volume on a manifold. See Boothby [9] for a more
complete treatment.

Let M be a manifold of dimension n. A volume form Ω on M is a
skew-symmetric multilinear map

Ωp : TpM × · · ·TpM︸ ︷︷ ︸
n

→ R

such that Ωp 6= 0 for all p ∈ M . The volume form defines the volume of
a parallelepiped formed by n tangent vectors. By integrating the volume
form over a manifold (using local coordinates), the volume of the manifold
(or a subset of the manifold) can be defined. IfM = Rn then the standard
volume form which corresponds to ordinary integration is given by the
determinant function, as follows:

Ω(V1, . . . , Vn) = det
[
V1 · · · Vn

]
Vi ∈ Rn.

430

Let F : M →M be a smooth map from M to itself. The pull back of
Ω by F , is a volume form F ∗Ω defined by

F ∗Ωx(v1, . . . , vn) = ΩF (x)(TxFv1, . . . , TxFvn).

In local coordinates, if J is the Jacobian of F evaluated at x and detJ
the determinant of J , then

F ∗Ω = (det J)Ω. (A.16)

Thus the pull back of a volume form generalizes the change of variables
formula from ordinary calculus. A volume form on SE(3) is said to be
left invariant if (Lg)

∗Ω = Ω and right invariant if (Rg)
∗Ω = Ω. A volume

form which is both left and right invariant is called bi-invariant.

Theorem A.8. Bi-invariant volume forms on SE(3)
Let Ω be a left invariant volume form on SE(3). Then Ω is also right
invariant and hence bi-invariant.

Sketch of proof. In order to show that I∗hΩ = Ω it suffices to show that

Ω(e) = det(TeIh)Ω(e).

However, the Jacobian of Ih at the identity is just the adjoint mapping
associated with h, and computing the determinant of Adh gives

det Adh = det

[
R p̂R
0 R

]
= 1.

Hence Ω is bi-invariant. Right invariance follows from bi-invariance and
left invariance.

A corollary of this theorem is that SE(3) supports a bi-invariant vol-
ume form, since we can define the volume element on se(3) ∼= R6 and then
use left (or right) translation to define a volume form on all of TSE(3).
One possible choice for such a volume form is to multiply the standard
volume form ΩR3 on TeR

3 = R3 with a volume form on so(3), the Lie
algebra of SO(3). It can be shown that a volume form on SO(3) can be
defined by making use of the Lie bracket and Killing form on SO(3):

ΩSO(3)(ω̂1, ω̂2, ω̂3) = −1

4
〈ω̂1, [ω̂2, ω̂3]〉K = ω1 · ω2 × ω3.

As seen from the last equality, this corresponds to the triple product if
we identify so(3) with R3 and, in fact, this is equivalent to the volume
form defined by using the standard volume on R3. With this definition,
SO(3) has a volume of 8π3 rad3.

A volume form defined by combining the volume on R3 with that on
SO(3), i.e., ΩSE(3) = ΩR3 × ΩSO(3), clearly depends on the choice of

431

length scale. In essence, this describes the tradeoff between translational
volume and angular volume. However, once a length scale has been fixed,
the volume form will not depend on the choice of coordinate frames. Also,
since changing the length scale results in a corresponding scaling of vol-
ume, one can still say that one volume is larger than another, independent
of this choice.

Example A.27. Well-posed manipulability measures
The use of the determinant of J(θ) as a measure of manipulability was de-
scribed in Chapter 3. This manipulability measure makes use of a volume
form on SE(3) defined in terms of the standard volume on R6 ∼= se(3).
Using the notation defined in Example A.26, the coordinate independence
of this measure can be seen from the relationships

det(J1(θ)) = det(Adh J2(θ)) = det Adh det J2(θ) = detJ2(θ).

Example A.28. Optimal manipulator design [85, 86]
Consider a robot manipulator consisting of six revolute joints (commonly
called a 6R manipulator). Let

g(θ) = e
bξ1θ1 · · · ebξ6θ6g(0)

be the forward kinematics map of the manipulator relative to some refer-
ence configuration, and lξi

be the twist axis associated with the ith joint.
Let Cξ denote the set of all curves which join the axes of the joints of
the manipulator. Thus c ∈ Cξ is a curve which links the axes of each ξi
and, without loss of generality, is parameterized such that c(i) ∩ lξi

6= 0.
In other words, c : [1, 6] → R3 and c(i) is a point on the axis of the
ith joint twist. The line segments c[i,i+1], i = 1, . . . , 5, are referred to as
links of the manipulator, and ct denotes c evaluated at t. We define the
manipulator length as

LM := min
c∈Cξ

6∑

i=2

‖ci − ci−1‖.

It is left as an exercise to show that LM is independent of the choice of
reference configurations.

The work volume VM of the manipulator is given by the following
volume integral

VM =

∫

g(Q)

Ω,

where Q = S1 × · · · × S1 = T6 is the manipulator joint space, g is the
forward kinematics map, and Ω is a bi-invariant volume form on SE(3).
If we use the volume form ΩSE(3) = ΩR3 ×ΩSO(3), the manipulator work
volume in terms of the manipulator length, LM , is

VM ≤
4

3
π(LM)3 · 8π3.

432

l0

T

S

q1

ξ5

q2

ξ2 ξ3

ξ1 ξ4

l1 l2
ξ6

Figure A.2: An elbow manipulator

A manipulator consisting of six revolute joints has maximal work volume
if it achieves this bound. This bound is independent of choice of base and
tool frames, but it does depend on the choice of length scale. However,
as noted above, this choice of scale does not affect comparisons between
volumes, and hence we can use this choice of volume to define an optimal
manipulator.

For the case of 6R manipulators, it is possible to completely describe
the class of manipulators which achieve maximal work volume. Define an
elbow manipulator to be one which consists of a shoulder, an elbow, and
a wrist aligned as shown in Figure A.2. The wrist and shoulder joints of
an elbow manipulator consist of mutually orthogonal axes intersecting at
a point. The inverse to an elbow manipulator is one in which the wrist
and the shoulder joints are switched (so that the “wrist” is located at the
base of the manipulator).

Theorem A.9. Optimal manipulator design
A 6R manipulator with given length LM has maximal work volume if and
only if it is an elbow manipulator or the inverse of an elbow manipulator,
with the elbow midway between the shoulder and the wrist.

A detailed discussion and proof of this result is given by Paden and
Sastry [85, 86]. The wrist at one end of the manipulator insures that
all orientations can be reached at any configuration. The location of the
elbow, at the midpoint between the shoulder and wrist, insures that there
is not a hole in the center of the workspace.

433

434

Appendix B

A Mathematica Package

for Screw Calculus

This appendix contains a brief description of a Mathematica package,
Screws.m, which facilitates the use of screws, twists, and wrenches for
analyzing robot kinematics. The Screws package implements all of the
functions described in Chapter 2 and, when combined with the supple-
mentary package RobotLinks.m, allows symbolic and numerical compu-
tation of the kinematics of open-chain robot manipulators as well as many
other functions. The Mathematica program itself is described in [121].

The Screws package is available via anonymous ftp from the host
avalon.caltech.edu and may be used free of charge. Documentation
and installation instructions are included with the source code for the
package. The Screws package was written by R. Murray and S. Sur at
the California Institute of Technology. All correspondence concerning the
software should be sent to via e-mail to murray@avalon.caltech.edu.
The authors assume no responsibility for the correctness or maintenance
of the Screws package. The source code is currently available only via
anonymous ftp.

The remainder of this appendix contains a brief description of the
Screws package, describing the functions which are available and their
syntax. Although not strictly necessary, some familiarity with Mathe-
matica is assumed. This appendix can also be used as a guide for im-
plementing a screw calculus package in other symbolic and numerical
programming languages.

Using the Screws package

The Screws package implements screw theory in 3-dimensional Euclidean
space, R3. It uses homogeneous coordinates to represent points, vectors,

435

and rigid motions, making it easy to integrate into other Mathematica
packages.

The Screws package consists of two groups of functions. The first
group operates on rotation matrices and implements all of the mathe-
matical operations described in Section 2 of Chapter 2. The following
functions are defined for computing in SO(3):

• AxisToSkew[w]

Generate a skew-symmetric matrix give a vector w ∈ R3.

• RotationAxis[R]

Calculate the axis of rotation for a matrix R ∈ SO(3).

• SkewExp[S, theta]

Calculate the exponential of a skew-symmetric matrix. If theta is
not specified, it defaults to 1. If the first argument to SkewExp is
a vector, SkewExp first converts it to a skew-symmetric matrix and
then takes its exponential.

• SkewToAxis[S]

Generates a vector given a skew-symmetric matrix.

Limited error checking is used to insure that the arguments to the func-
tions are in the proper form.

The second group of functions implements calculations on SE(3).
Rigid body transformations are represented using 4× 4 matrices. Func-
tions are provided for transforming points and vectors to and from ho-
mogeneous coordinates, as well as converting a translation and rotation
pair into a 4 × 4 matrix. The following functions are defined for use in
SE(3):

• HomogeneousToTwist[xi]

Convert xi from a 4× 4 matrix to a 6-vector.

• PointToHomogeneous[q]

Generate the homogeneous representation of a point q ∈ R3.

• RigidAdjoint[g]

Generate the adjoint matrix corresponding to g.

• RigidOrientation[g]

Extract the rotation matrix R from a homogeneous matrix g.

• RigidPosition[g]

Extract the position vector p from a homogeneous matrix g.

• RigidTwist[g]

Compute the twist xi ∈ R6 which generates the homogeneous ma-
trix g.

436

• RPToHomogeneous[R,p]

Construct a 4 × 4 homogeneous matrix from a rotation matrix R

and a translation p.

• ScrewToTwist[h, q, w]

Return the twist coordinates of a screw with pitch h through the
point q and in the direction w. If h == Infinity, then a pure
translational twist is generated. In this case, q is ignored and w

gives the direction of translation.

• TwistAxis[xi]

Compute the axis of the screw corresponding to a twist. The axis
is represented as a pair {q, w}, where q is a point on the axis and
w is a unit vector describing the direction of the axis. The twist xi
can be specified either as a 6-vector or a 4× 4 matrix.

• TwistExp[xi, theta]

Compute the matrix exponential of a twist xi. The default value
of theta is 1. If the first argument to TwistExp is a 6-vector, it is
automatically converted to a 4× 4 matrix.

• TwistPitch[xi]

Compute the pitch of a twist.

• TwistMagnitude[xi]

Compute the magnitude of a twist.

• TwistToHomogeneous[xi]

Convert xi from a 6-vector to a 4× 4 matrix.

• VectorToHomogeneous[q]

Generate the homogeneous representation of a vector.

Limited error checking is used to insure that the arguments to the func-
tions are in the proper form.

Manipulator kinematics

The functions defined in the Screws package can be used to analyze the
kinematics of a robot manipulator. This section describes this process and
defines some new functions which streamline the analysis of manipulator
kinematics. These functions are contained in the package RobotLinks.m,
which is included with in Screws package distribution.

The forward kinematics for a robot manipulator can be written as a
product of exponentials (of twists). The following functions are defined
for creating twists specifically for robot manipulators:

437

• RevoluteTwist[q, w]

Construct the unit twist corresponding to a revolute joint in the
direction w going through the point q.

• PrismaticTwist[q, w]

Construct the unit twist corresponding to a prismatic joint in the
direction w going through the point q.

These functions use the ScrewToTwist function defined in Screws.m.
Once the twists are defined, the forward kinematic map and the ma-

nipulator Jacobian can be calculated using matrix multiplication com-
bined with the TwistExp and RigidAdjoint functions. These computa-
tions are automated by the following functions:

• ForwardKinematics[{xi1, th1}, {xi2, th2}, ..., gst0]

Compute the forward kinematics map using the product of expo-
nentials formula. The pairs {xi, th} define the joint twist and
joint angle (or displacement) for each joint of the manipulator.

• SpatialJacobian[{xi1, th1}, {xi2, th2}, ..., gst0]

Compute the spatial manipulator Jacobian for the manipulator.
The pairs {xi, th} are given as in the ForwardKinematics func-
tion.

An example of the usage of Screws and RobotLinks packages is shown be-
low for computing the kinematics of a SCARA manipulator. The notation
corresponds to the notation used to describe the SCARA manipulator in
Chapter 2.

<<Screws.m (* screws package *)

<<RobotLinks.m (* additional functions *)

(* Twist axes for SCARA robot, starting from the base *)

xi1 = RevoluteTwist[{0,0,0}, {0,0,1}]; (* base *)

xi2 = RevoluteTwist[{0,l1,0}, {0,0,1}]; (* elbow *)

xi3 = RevoluteTwist[{0,l1+l2,0}, {0,0,1}]; (* wrist *)

xi4 = PrismaticTwist[{0,0,0}, {0,0,1}];

(* Location of the tool frame at reference configuration *)

gst0 = RPToHomogeneous[IdentityMatrix[3], {0,l1+l2,0}];

(* Forward kinematics map *)

gst = Simplify[

ForwardKinematics[

{xi1,th1}, {xi2,th2}, {xi3,th3}, {xi4,th4}, gst0

]

];

438

(* Spatial manipulator Jacobian *)

Js = Simplify[

SpatialJacobian[{xi1,th1}, {xi2,th2}, {xi3,th3}, {xi4,th4}, gst0]

];

439

440

Bibliography

[1] J. Angeles. Rational Kinematics. Springer-Verlag, 1988.

[2] H. Asada and J. J. Slotine. Robot Analysis and Control. John Wiley,
1986.

[3] K. J. Astrom and B. Wittenmark. Computer Controlled Systems: Theory
and Design. Prentice-Hall, 1984.

[4] J. Baillieul. Geometric methods for nonlinear optimal control problems.
Journal of Optimization Theory and Applications, 25(4):519–548, 1978.

[5] J. Baillieul and D. Martin. Resolution of redundancy. In R. W. Brock-
ett, editor, Robotics: Proceedings of Symposia in Applied Mathematics,
Volume 41, pages 49–90. American Mathematical Society, 1990.

[6] R. S. Ball. A Treatise on the Theory of Screws. Cambridge University
Press, 1900.

[7] A. Bicchi, J. K. Salisbury, and D. L. Brock. Contact sensing from force
measurements. International Journal of Robotics Research, 12(3):249–
262, 1993.

[8] A. M. Bloch, M. Reyhanoglu, and N. H. McClamroch. Control and
stabilization of nonholonomic dynamic systems. IEEE Transactions on
Automatic Control, 37(11):1746–1757, 1992.

[9] W. M. Boothby. An Introduction to Differentiable Manifolds and Rie-
mannian Geometry. Academic Press, second edition, 1986.

[10] O. Bottema and B. Roth. Theoretical Kinematics. North-Holland, 1979.

[11] R. W. Brockett. Control theory and singular Riemannian geometry. In
P. Hinton and G. Young, editors, New Directions in Applied Mathematics,
pages 11–27. Springer-Verlag, New York, 1981.

[12] R. W. Brockett. Robotic manipulators and the product of exponentials
formula. In P. A. Fuhrman, editor, Mathematical Theory of Networks
and Systems, pages 120–129. Springer-Verlag, 1984.

[13] R. W. Brockett, editor. Robotics: Proceedings of Symposia in Applied
Mathematics, Volume 41. American Mathematical Society, 1990.

[14] R. W. Brockett and L. Dai. Non-holonomic kinematics and the role of
elliptic functions in constructive controllability. In Z. Li and J. F. Canny,
editors, Nonholonomic Motion Planning, pages 1–22. Kluwer, 1993.

441

[15] R. W. Brockett, A. Stokes, and F. Park. A geometrical formulation of the
dynamical equations describing kinematic chains. In IEEE International
Conference on Robotics and Automation, pages 637–642, 1993.

[16] R. A. Brooks and A. M. Flynn. Rover on a chip. Aerospace America,
pages 22–26, October 1989.

[17] P. Chiacchio and B. Siciliano. A closed-loop Jacobian transpose scheme
for solving the inverse kinematics of nonredundant and redundant wrists.
Journal of Robotics Systems, 6(5):601–630, 1989.

[18] D. S. Childress. Artificial hand mechanisms. In Mechanisms Confer-
ence and International Symposium on Gearing and Transmissions, San
Francisco, CA, October 1972.

[19] M. Cohn, D. C. Deno, S. S. Sastry, and J. Wendlandt. Actuating and
force-sensing for cable-driven, teleoperated manipulators. In Medicine
Meets Virtual Reality, San Diego, 1992. Aligned Management Associates.

[20] P. Coiffet et al. Robot Technology. McGraw-Hill, 1983. Translation from
the French, Les Robots (8 volumes).

[21] J. J. Craig. Introduction to Robotics: Mechanics and Control. Addison-
Wesley, second edition, 1989.

[22] M. R. Cutkosky. Robotic Grasping and Fine Manipulation. Kluwer, 1985.

[23] A. De Luca and G. Oriolo. The reduced gradient method for solving
redundancy in robot arms. Robotersysteme, 7(2):117–122, 1991.

[24] J. Demmel, G. Lafferriere, J. Schwartz, and M. Sharir. Theoretical and
experimental studies using a multifinger planar manipulator. In IEEE
International Conference on Robotics and Automation, pages 390–395,
1988.

[25] J. Denavit and R. S. Hartenberg. A kinematic notation for lower-pair
mechanisms based on matrices. Journal of Applied Mechanics, pages
215–221, June 1955.

[26] D. C. Deno, R. M. Murray, K. S. J. Pister, and S. S. Sastry. Finger-like
biomechanical robots. In IEEE International Conference on Robotics and
Automation, 1992.

[27] M. P. do Carmo. Differential Geometry of Curves and Surfaces. Prentice-
Hall, 1976.

[28] J. Duffy. Analysis of Mechanisms and Robot Manipulators. Edward
Arnold Ltd., London, 1980.

[29] J. Duffy and C. Crane. A displacement analysis of the general spatial 7R
mechanism. Mechanisms and Machine Theory, 15:153–169, 1980.

[30] A. G. Erdman and G. N. Sandor. Mechanism Design: Analysis and
Synthesis. Prentice-Hall, 1984.

[31] R. S. Fearing. Micro structures and micro actuators for implementing
sub-millimeter robots. In H. S. Tzou and T. Fukuda, editors, Precision
Sensor, Actuators and Systems. Kluwer Academic Publishers, 1992.

442

[32] C. Fernandes, L. Gurvits, and Z. Li. Attitude control of a space plat-
form manipulator system using internal motion. International Journal of
Robotics Research, 1994. (to appear).

[33] C. Fernandes, L. Gurvits, and Z. Li. Near optimal nonholonomic motion
planning for a system of coupled rigid bodies. IEEE Transactions on
Automatic Control, March 1994.

[34] G. F. Franklin, J. D. Powell, and A. Emami-Naeini. Feedback Control of
Dynamic Systems. Addison-Wesley, second edition, 1991.

[35] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee. Robotics: Control, Sensing,
Vision and Intelligence. McGraw Hill, 1987.

[36] B. Gorla and M. Renaud. Modeles des Robots Manipulateurs: applications
á leur commande. Cepadues-Éditions, 1984.

[37] M. Grayson and R. Grossman. Models for free nilpotent Lie algebras.
Journal of Algebra, 135(1):177–191, 1990.

[38] M. Hall. The Theory of Groups. Macmillan, 1959.

[39] H. Hanafusa and H. Asada. A robotic hand with elastic fingers and its
application to assembly process. In M. Brady et al., editor, Robot Motion:
Planning and Control, pages 337–360. MIT Press, 1982.

[40] R. Hermann and A. J. Krener. Nonlinear controllability and observability.
IEEE Transactions on Automatic Control, AC–22:728–740, 1977.

[41] G. Hinton. Some computational solutions to Bernstein’s problems. In
H. T. A. Whiting, editor, Human Motor Actions—Bernstein Reassessed,
chapter 4b. Elsevier Science Publishers B.V., 1984.

[42] K. H. Hunt. Kinematic Geometry of Mechanisms. Oxford University
Press, 1978.

[43] A. Isidori. Nonlinear Control Systems. Springer-Verlag, 2nd edition,
1989.

[44] S. Jacobsen, J. Wood, K. Bigger, and E. Iverson. The Utah/MIT hand:
Work in progress. International Journal of Robotics Research, 4(3):21–50,
1984.

[45] A. Jain and G. Rodriguez. Recursive flexible multibody system dynamics
using spatial operators. Journal of Guidance, Control, and Dynamics,
15(6):1453–1466, 1992.

[46] W. Kahan. Lectures on computational aspects of geometry. Department
of Electrical Engineering and Computer Sciences, University of Califor-
nia, Berkeley. Unpublished, July 1983.

[47] I. Kao and M. R. Cutkosky. Quasi-static manipulation with compliance
and sliding. International Journal of Robotics Research, 11(1):20–40,
1992.

[48] J. Kerr. An Analysis of Multi-fingered Hands. PhD thesis, Department
of Mechanical Engineering, Stanford University, 1984.

[49] H. K. Khalil. Nonlinear Systems. Macmillan, 1992.

443

[50] O. Khatib. A unified approach for motion and force control of robot ma-
nipulators: The operational space formulation. IEEE Journal on Robotics
and Automation, RA-3(1):43–53, February 1987.

[51] D. Koditschek. Natural motion for robot arms. In IEEE Control and
Decision Conference, pages 733–735, 1984.

[52] A. J. Koivo. Fundamentals for Control of Robotic Manipulators. Wiley,
1989.

[53] K. Kreutz. On manipulator control by exact linearization. IEEE Trans-
actions on Automatic Control, 34(7):763–767, 1989.

[54] G. Lafferriere and H. J. Sussmann. A differential geometric approach
to motion planning. In Z. Li and J. F. Canny, editors, Nonholonomic
Motion Planning, pages 235–270. Kluwer, 1993.

[55] J.-P. Laumond. Finding collision-free smooth trajectories for a non-
holonomic mobile robot. In International Joint Conference on Artificial
Intelligence, pages 1120–1123, 1987.

[56] D. F. Lawden. Elliptic Functions and Applications. Springer-Verlag,
1980.

[57] H. Y. Lee and C. G. Liang. A new vector theory for the analysis of spatial
mechanisms. Mechanisms and Machine Theory, 23(3):209–217, 1988.

[58] Z. Li. Kinematics, Planning and Control of Dextrous Robot Hands. PhD
thesis, Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, 1989.

[59] Z. Li. Geometrical considerations of robot kinematics. International
Journal of Robotics and Automation, 5(3):139–145, 1990.

[60] Z. Li and J. Canny. Motion of two rigid bodies with rolling constraint.
IEEE Transactions on Robotics and Automation, 6(1):62–71, 1990.

[61] Z. Li and J. F. Canny, editors. Nonholonomic Motion Planning. Kluwer,
1992.

[62] Z. Li, P. Hsu, and S. S. Sastry. Grasping and coordinated manipulation by
a multifingered robot hand. International Journal of Robotics Research,
8(4):33–50, 1989.

[63] J. Loncarić. Geometric Analysis of Compliant Mechanisms in Robotics.
PhD thesis, Division of Applied Sciences, Harvard University, 1985.

[64] D. Manocha and J. F. Canny. Real time inverse kinematics for general
6R manipulators. Technical Report ESRC 92-2, University of California,
Berkeley, 1992.

[65] R. Manseur and K. L. Doty. A robot manipulator with 16 real inverse
kinematic solutions. International Journal of Robotics Research, 8(5):75–
79, 1989.

[66] X. Markenscoff, L. Ni, and C. H. Papadimitriou. The geometry of grasp-
ing. International Journal of Robotics Research, 9(1):61–74, 1990.

[67] J. E. Marsden. Lectures on Mechanics. London Mathematical Society,
1992.

444

[68] J. E. Marsden, R. Montgomery, and T. S. Ratiu. Reduction, Symmetry,
and Phases in Mechanics, volume 436 of Memoirs. American Mathemat-
ical Society, 1990.

[69] M. T. Mason and J. K. Salisbury. Robot Hands and the Mechanics of
Manipulation. MIT Press, 1985.

[70] J. M. McCarthy. An Introduction to Theoretical Kinematics. MIT Press,
1990.

[71] B. Mishra, J. T. Schwartz, and M. Sharir. On the existence and synthesis
of multifingered positive grips. Algorithmica, 2:541–558, 1987.

[72] D. J. Montana. The kinematics of contact and grasp. International
Journal of Robotics Research, 7(3):17–32, 1988.

[73] D. J. Montana. The kinematics of contact with compliance. In IEEE
International Conference on Robotics and Automation, pages 770–775,
1989.

[74] R. M. Murray. Nilpotent bases for a class of non-integrable distribu-
tions with applications to trajectory generation for nonholonomic sys-
tems. Technical Report CIT/CDS 92-002, California Institute of Tech-
nology, October 1992.

[75] R. M. Murray, D. C. Deno, K. S. J. Pister, and S. S. Sastry. Control
primitives for robot systems. IEEE Transactions on Systems, Man and
Cybernetics, 22(1):183–193, 1992.

[76] R. M. Murray and S. S. Sastry. Control experiments in planar manipu-
lation and grasping. In IEEE International Conference on Robotics and
Automation, pages 624–629, 1989.

[77] R. M. Murray and S. S. Sastry. Grasping and manipulation using multi-
fingered robot hands. In R. W. Brockett, editor, Robotics: Proceedings of
Symposia in Applied Mathematics, Volume 41, pages 91–128. American
Mathematical Society, 1990.

[78] R. M. Murray and S. S. Sastry. Nonholonomic motion planning: Steering
using sinusoids. IEEE Transactions on Automatic Control, 38(5):700–
716, 1993.

[79] Y. Nakamura. Advanced Robotics: Redundancy and Optimization.
Addison-Wesley, 1991.

[80] Y. Nakamura, K. Nagai, and T. Yoshikawa. Dynamics and stability in
coordination of multiple robotic mechanisms. International Journal of
Robotics Research, 8(2):44–61, 1989.

[81] Ju. I. Neimark and N. A. Fufaev. Dynamics of Nonholonomic Systems,
volume 33 of Translations of Mathematical Monographs. American Math-
ematical Society, 1972.

[82] V.-D. Nguyen. Constructing force-closure grasps. International Journal
of Robotics Research, 7(3):3–16, 1988.

[83] H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control
Systems. Springer-Verlag, 1990.

445

[84] T. Okada. Computer control of multijointed finger system for precise
object-handling. IEEE Transactions on Systems, Man and Cybernetics,
SMC-12(3):289–299, 1982.

[85] B. Paden. Kinematics and Control Robot Manipulators. PhD thesis,
Department of Electrical Engineering and Computer Sciences, University
of California, Berkeley, 1986.

[86] B. Paden and S. S. Sastry. Optimal kinematic design of 6R manipulators.
International Journal of Robotics Research, 7(2):43–61, 1988.

[87] F. C. Park, J. E. Bobrow, and S. R. Ploen. A Lie group formulation of
robot dynamics. UCI Mechanical Systems Technical Report, Department
of Mechanical Engineering, University of California, Irvine, April 1993.

[88] F. C. Park and A. P. Murray. Computational aspects of the product-of-
exponentials formula for robot kinematics. IEEE Transactions on Auto-
matic Control, 1994. (to appear).

[89] L. A. Pars. A Treatise on Analytical Dynamics. Wiley, 1965.

[90] R. P. Paul. Robot Manipulators: Mathematics, Programming and Control.
MIT Press, 1981.

[91] K. S. J. Pister. Hinged Polysilicon Structures with Integrated CMOS Thin
Film Transistors. PhD thesis, Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, 1992.

[92] K. S. J. Pister, R. S. Fearing, and R. T. Howe. A planar air levitated
space electrostatic actuator system. In IEEE Workshop on Micro Electro
Mechanical Systems, pages 67–71, 1990.

[93] K. S. J. Pister, M. W. Judy, S. R. Burgett, and R. S. Fearing. Micro-
fabricated hinges. Sensors and Actuators A—Physical, 33(3):249–256,
1992.

[94] E. J. F. Primrose. On the input-output equation of the general 7R mech-
anism. Mechanisms and Machine Theory, 21:509–510, 1986.

[95] M. Raghavan. Manipulator kinematics. In R. W. Brockett, editor,
Robotics: Proceedings of Symposia in Applied Mathematics, Volume 41,
pages 21–48. American Mathematical Society, 1990.

[96] M. Raghavan and B. Roth. Inverse kinematics of the general 6R manip-
ulator and related linkages. Journal of Mechanical Design, 115:502–508,
1993.

[97] R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

[98] G. Rodriguez, A. Jain, and K. Kreutz-Delgado. A spatial operator algebra
for manipulator modeling and control. International Journal of Robotics
Research, 10(4):371–381, 1991.

[99] R. M. Rosenberg. Analytical Dynamics of Discrete Systems. Plenum
Press, New York, 1977.

[100] B. Roth, J. Rastegar, and V. Scheinman. On the design of computer
controlled manipulators. On the Theory and Practice of Robots and Ma-
nipulators, Proceedings of the First CISM-IFToMM Symposium, pages
93–113, 1973.

446

[101] J. K. Salisbury. Kinematic and Force Analysis of Articulated Hands. PhD
thesis, Department of Mechanical Engineering, Stanford University, 1982.

[102] S. S. Sastry and M. Bodson. Adaptive Control: Stability, Convergence,
and Robustness. Prentice-Hall, 1989.

[103] S. S. Sastry and R. Montgomery. The structure of optimal controls for
a steering problem. In IFAC Symposium on Nonlinear Control Systems
Design (NOLCOS), pages 385–390, 1992.

[104] J-P. Serre. Lie Algebras and Lie groups. W. A. Benjamin, New York,
1965.

[105] T. Shamir and Y. Yomdin. Repeatability of redundant manipulators:
Mathematical solution of the problem. IEEE Transactions on Automatic
Control, 33(11):1004–1009, 1988.

[106] F. Skinner. Designing a multiple prehension manipulator. Journal of
Mechanical Engineering, 97(9):30–37, 1975.

[107] J. E. Slotine and W. Li. On the adaptive control of robot manipulators.
International Journal of Robotics Research, 6:49–59, 1987.

[108] M. Spivak. A Comprehensive Introduction to Differential Geometry, vol-
ume I. Publish or Perish, Inc., Houston, second edition, 1979.

[109] M. W. Spong, F. L. Lewis, and C. T. Abdallah, editors. Robot Control:
Dynamics, Motion Planning and Analysis. IEEE Press, 1991.

[110] M. W. Spong and M. Vidyasagar. Dynamics and Control of Robot Ma-
nipulators. John Wiley, 1989.

[111] D. Stewart. A platform with six degrees of freedom. Proceedings of the
Institute of Mechanical Engineering, 180, part I(5):371–186, 1954. 1965–
66.

[112] D. Tilbury, R. M. Murray, and S. S. Sastry. Trajectory generation for
the N-trailer problem using Goursat normal form. In IEEE Control and
Decision Conference, pages 971–977, 1993.

[113] R. Tomović and G. Boni. An adaptive artificial hand. IRE Transactions
on Automatic Control, 7(3):3–10, 1962.

[114] J. P. Trevelyan. Robots for Shearing Sheep: Shear Magic. Oxford Uni-
versity Press, York, 1992.

[115] V. S. Varadarajan. Lie Groups, Lie Algebras, and Their Representations.
Springer-Verlag, 1984.

[116] T. Venkataraman and T. Iberall, editors. Dextrous Robot Hands.
Springer-Verlag, 1988.

[117] A. M. Vershik and V. Ya. Gershkovich. Nonholonomic problems and
the theory of distributions. Acta Applicandae Mathematicae, 12:181–209,
1988.

[118] M. Vidyasagar. Nonlinear Systems Analysis. Prentice-Hall, second edi-
tion, 1993.

447

[119] G. Walsh and S. S. Sastry. On reorienting rigid linked bodies using inter-
nal motions. In IEEE Control and Decision Conference, pages 1190–1195,
1991. (to appear in IEEE Transactions on Robotics and Automation,
1994).

[120] J. T. Wen and D. S. Bayard. New class of control laws for robot ma-
nipulators. Part 1: Non-adaptive case. International Journal of Control,
47(5):1361–1385, 1988.

[121] S. Wolfram. Mathematica: A System for Doing Mathematics by Com-
puter. Addison-Wesley, 1992.

[122] T. Yoshikawa. Foundations of Robotics: Analysis and Control. MIT
Press, 1990.

[123] L. C. Young. Lectures on the Calculus of Variations and Optimal Control
Theory. Chelsea, New York, second edition, 1980.

448

Index

actions of Lie groups, 415–416
actuator redundancy, 286
actuator singularities, 135, 141
actuators, types of, 155
AdeptOne robot, 5, 83
adjoint action, 415, 420, 421
adjoint transformation, 55

between body and spatial manipula-
tor Jacobian, 117, 125

between body and spatial velocities,
55, 56

for general Lie groups, 415
for planar motions, 76
properties of, 77
of twists, 56, 59, 94
of velocities, 59, 421
of wrenches, 62, 63, 422

admissible velocities, for parallel manipu-
lators, 134

angular velocity, see rotational velocity
antipodal grasp, 232, 233
asymptotic stability, 179, 180
atan2, 32
automobile, see kinematic car
axis of a screw, 45

choice of point on, 49
axis of a twist, 47
axis of a wrench, 65

ball and socket joint, see spherical joint
Ball, R. S., 19
base frame, 84, 91
biological motor control, 303, 307
body angular velocity, 52
body frame, 22, 23, 51
body manipulator Jacobian, see manipu-

lator Jacobian
body velocity, 55, 419

geometric interpretation, 55
relationship with spatial velocity, 55,

56, 61, 420
transformation and addition of, 59

body wrench, 63

Campbell-Baker-Hausdorff formula, 381

car with N trailers, 349
Caratheodory’s theorem, 230, 299
Cayley parameters, 73
center of mass, 161
chained form, 363, 364, 392

conversion to, 369
change of coordinates, see coordinate trans-

formations
Chasles’ theorem, 19, 49, 418
Chen-Fliess series, 376, 378
Chow’s theorem, 329, 341
Christoffel symbols, 170, 246
closed-chain manipulators, see parallel ma-

nipulators
coadjoint action, 416, 422
coefficient of friction, 216, 218
collinear revolute joints, 124
commutator, 324
complete workspace, 95
completely nonholonomic, 320, 339
computed torque, 190–192, 198, 204, 301
condition number of a matrix, 128
configuration of a rigid body, 22
configuration space, 25, 35, 83, 165, 265
conservation of angular momentum, 335
constrained Lagrangian, 275
constrained manipulators

control of, 201–202, 209, 300, 428
dynamics of, 200–201, 284
planar example, 203

constraints, 157, 266, 428
forces of, 157, 200, 266–269, 428

zz, see also internal forces
holonomic, 157, 266, 318
integrable, 267
in multifingered grasps, 234–242, 253
nonholonomic, 268, 274
Pfaffian, 266–268

contact coordinates, 249, 254
contact forces, 215–218, 224, 238, 260, 277,

280
contact frame, 214, 246
contact kinematics, 248–253

planar, 262
contact models, 214–218, 259

449

control
of constrained manipulators, 201–202,

209, 300
of multifingered hands, 300–310
of open-chain manipulators, 189–198
problem description, 156
of tendon-driven fingers, 298
in workspace coordinates, 195–198

controllability, 328–332
controllability Lie algebra, 329
controllability rank condition, 330
convex hull, 225, 229
convex set, 225
coordinate chart, 243, 403
coordinate frame, 20
coordinate transformations

on inertia matrix, 208
invariance under, 78, 422–433
on twists, 59, 77
use in analyzing singularities, 125
on velocities, 58, 421
on wrenches, 62, 422

coordinated lifting, 213, 263, 281
coplanar revolute axes, 125, 150
Coriolis and centrifugal forces, 165, 170
Coriolis matrix, 171, 176, 279
cotangent space, 326, 405
Coulomb friction, 216
coupling matrix, 295, 297
covector, 326
cross product

2-dimensional, 232
and Lie bracket, 175, 411
matrix representation, 26
preservation by rigid body transfor-

mations, 21
properties of, 26, 73

curvature tensor, 245
cylindrical joint, 81

d’Alembert’s principle, 268, 271
degree of nonholonomy, 340
degrees of freedom, 84, 129, 303, 398

of four-bar mechanism, 135
loss of, 123, 127
for parallel mechanisms, 133
redundant, 285

Denavit-Hartenberg parameters, 93, 110
dextrous manipulation, 9, 213
dextrous workspace, 95, 129
dialytical elimination, 108
diffeomorphism, 403
direct method of Lyapunov, 181
disk rolling on a plane, 272, 314, 336
dispacement, rigid, 20
distribution, 325

drift-free control systems, 329
dynamic finger repositioning, 382–388
dynamics, 155

constrained manipulators, 200–201,
284

multifingered hands, 276–285
nonmanipulable grasps, 290–291
open-chain manipulators, 168–178
passivity property, 172, 209
in presence of constraints, 265–276
redundant manipulators, 286–290
structural properties, 171, 197, 279,

314
using the product of exponentials for-

mula, 175
in workspace coordinates, 282

eigenvalues of a rotation matrix, 30, 73
elastic tendons, 296–299
elbow manipulator, 147, 433

forward kinematics, 89
inverse kinematics, 104

end-effector, 8, 83
end-effector velocity

using manipulator Jacobian, 115
for parallel manipulators, 133

end-effector wrench
using manipulator Jacobian, 121–123,

130
for parallel manipulators, 134
for redundant manipulators, 131
at singular configuration, 124, 151

Engel’s system, 373
equilibrium point, 179
equivalent axis representation, 31
equivalent wrenches, 62
Euler angles, 31, 150
Euler’s equation, 166, 167, 208
Euler’s theorem, 30
Euler-Lagrange equations, 359
exact one-form, 327
exceptional surface, 230
exponential coordinates

on a Lie group, 414
for rigid motion, 39–45

zz, see also twists
for rotation, 27–31

exponential map
as relative transformation, 42, 45, 49
on general Lie group, 412
for rigid body transformations, 41,

413, 417
for rotations, 28–29, 413
surjectivity onto SE(3), 42
surjectivity onto SO(3), 29

450

exponential of a matrix, see matrix expo-
nential

exponential stability, 180
extension function, 294

falling cat example, 352
feedback linearization, 192
feedforward control, 191, 309
Fick angles, 32
filtration, 340
finger kinematics, 234–237, 253–254
fingertip frame, 234
firetruck example, 350
first fundamental form, 244
first-order controllable systems, 358
fixed contact kinematics, 214
flow of a vector field, 322, 406
foliation, 326
force control, see constrained manipula-

tors, control of
force-closure, 213

for antipodal grasps, 232
convexity conditions for, 226
for grasping, 223
number of contacts required, 230
for tendon network, 299

forward kinematics, 83–97
for elbow manipulator, 89
for parallel manipulators, 132
product of exponentials formula, 85–

91
for redundant manipulators, 129
for SCARA manipulator, 87, 92

four-bar linkage, 135–138, 314
frame, see coordinate frame, tool frame,

base frame, etc.
frame invariance, 78, 422
free vector, see vector
friction cone, 216, 218, 228, 229
frictionless point contacts, 215, 220, 224
Frobenius’ theorem, 326
fundamental grasp constraints, see grasp

constraints

Gauss frame, 245
Gauss map, 245
Gauss-Bonnet theorem, 385
general linear group, GL(n, R), 409, 410,

412
generalized coordinates, 158, 265, 274
generalized forces, 158
generalized inertia matrix, 162
geometric parameters for a surface, 246
geometric phase, 385
global stability, 180
grasp constraints

fundamental grasp constraint, 237
nonmanipulable case, 291
redundant case, 289

grasp map, 218–223
grasping

basic assumptions, 213, 214
control, 300–310
dynamics, 276–285
effect of fingers, 234–242
fixed contact kinematics, 214–223
force relationships, 238
kinematics and statics, 211–255
versus parallel mechanisms, 281
planar case, 222, 231, 232
planning problem, 213, 229–234
properties, see force-closure, manip-

ulability
representation of grasps, 220, 237
rolling contact kinematics, 242–255
similarity to parallel mechanisms, 134
summary of properties, 239
velocity constraints, 237

group
definition, 24
of rigid body transformations, 37
of rotations, 24

growth vector, 341
Gruebler’s formula, 133

hand Jacobian, 236, 285
harmonic oscillator, 185
hazardous environments, 396
helical joint, 81
Helmholtz angles, 32
hierarchical control, 302
holonomic constraints, 157, 266, 318
homogeneous coordinates, 19, 36–39, 417–

419
for points and vectors, 36, 417
for rigid body transformations, 36,

417
homunculus diagram, 9
hopping robot, 333, 341
hybrid force control, see constrained ma-

nipulators, control of
hyperbolic metric on SE(3), 426

indirect method of Lyapunov, 184
inelastic tendons, 294–296
inertia matrix

effect of coordinate transformation,
208

effective, in grasping, 279
for open-chain manipulators, 168, 176
for rigid bodies, 162, 208

inertia tensor, 162, 166

451

infinite pitch screw, 48
integrable constraints, 267, 318
integrable distribution, 326
integral manifolds, 326
integrating factor, 319
internal forces, 134, 223, 279, 301

due to motion, 280, 290
in grasping, 279–281
regulation of, 301, 302
in tendon network, 299

internal motions, 130, 238, 285, 287
intersecting joint axes, 126, 151
invariant set, 188
inverse elbow manipulator, 147, 433
inverse kinematics, 97–114

for elbow manipulator, 104
general solutions, 108
number of solutions, 98, 114
for parallel manipulators, 133, 140
for redundant manipulators, 130
for SCARA manipulator, 106
simple example, 97
solving using subproblems, 98, 104
for Stewart platform, 140

involutive closure, 325
involutive distribution, 325
isotropic points, 150

Jacobi identity, 325, 408
Jacobian transpose, 121, 124
Jacobian, manipulator, see manipulator

Jacobian
joint angle, 84
joint space

for open-chain manipulators, 83
for parallel manipulators, 133

joint space control, 156
versus workspace control, 195, 198

joint torques
choice of, in grasping, 301
and end-effector forces, 121, 289
and tendon forces, 295

joint twists, 87
given Denavit-Hartenberg parameters,

94
joint types, 81

Killing form, 427
kinematic car, 318, 336, 343
kinematic redundancy, 286

zz, see also redundant manipulators
kinematic singularities, 123–127, 150–151

versus actuator singularities, 135, 141
for four-bar mechanism, 137
for open-chain manipulators, 124–127
for parallel manipulators, 134

kinematics, 81
kinetic energy, 161
Klein form, 426

Lagrange multipliers, 157, 269–271
formula for, 270
relationship with contact forces, 280

Lagrange’s equations, 158
for constrained systems, 269, 275
for mechanical systems, 156–167
for open-chain manipulators, 169

Lagrange-d’Alembert equations, 271, 272,
275

Lagrangian, 158
for multifingered hand, 277
for open-chain manipulators, 168

Lasalle’s invariance principle, 188, 194
leaf of a foliation, 326
left invariant vector field, 409
length scale, 424
Lie algebra, 326, 407, 410
Lie bracket, 175, 323–325, 407
Lie bracket motion, 323
Lie derivative, 322, 406
Lie group, 408
Lie product, 324, 344
line contact, 260
linearization, 184
link frames, 93
local controllability, 331
local stability, 179, 180, 185
locally positive definite functions, 182
log function on a Lie group, 413
loop equation, see structure equations
lower pair joints, 81
Lyapunov functions

choosing, 183
skewed energy, 186, 194

Lyapunov stability, 178–189
basic theorem, 182
direct method, 181–184
indirect method, 184–185

magnitude of a twist, 48, 427
magnitude of a wrench, 66
manifold, 318
manifold, definition of, 403
manipulability measures, 127–129, 149, 151,

429
well-posed, 432

manipulable grasp, 213, 237
manipulator inertia matrix, 168
manipulator Jacobian, 115–129

body, 116
geometric interpretation, 116

452

versus Jacobian of a mapping, 115,
120

and manipulability measures, 128
for mapping forces, 121–123, 130
for parallel manipulators, 133
for redundant manipulators, 130
relationship between body and spa-

tial, 117
for SCARA manipulator, 118, 122
singularities, see kinematic singular-

ities
spatial, 116
for Stanford manipulator, 119

manipulator workspace, see workspace
mass matrix, see manipulator inertia ma-

trix
Mathematica, 435
matrix exponential, 19, 27, 40

properties of, 74
maximally independent contact regions,

233
medical robotics, 398
metric tensor, 244
microrobotics, 399
minimally invasive surgery, 398
Motoman, 282
multifingered grasp, 237

zz, see also grasping
multifingered hand, 8

limitations and advantages, 212

Newton’s law, 157, 159, 166, 167
Newton-Euler equations, 165–167, 314
nilpotent Lie algebra, 344, 376
nonholonomic constraints, 268, 274–276,

318
classification, 340
versus holonomic constraints, 274
integrating, 319
zz, see also Pfaffian constraints

nonholonomic motion planning, 319, 331
nonmanipulable grasps, 239, 290
normal vector, 244
normalized Gauss frame, 245
numbering conventions for a robot, 83

ω limit set, 188
one-forms, 326, 408
open loop control, 190
open-chain manipulators, 82
optimal manipulator design, 432
optimal steering, 371
orthogonal coordinate chart, 244
orthogonal matrices, see rotation matri-

ces

Paden-Kahan subproblems, 99–103, 147–
148

solving inverse kinematics using, 104
palm frame, 215
parallel manipulators, 132–142

inverse kinematics, 133, 140
kinematic singularities, 134
zz, see also four bar linkage, Stewart

platform
passivity, 172, 187, 209
PD control, 193–195
perspective transformations, 37
Pfaffian constraints, 266–268

converting to control system, 320,
327

integrability conditions, 328
Philip Hall basis, 344
pitch of a screw, 45
pitch of a twist, 47, 427
pitch of a wrench, 65
planar grasping, 222, 231, 232, 262
planar joint, 82
planar rigid body transformations, 76
planar rotational motion, 75
planar Stewart platform, 141
plane contact, 260
Poinsot’s theorem, 19, 64, 65
point contact with friction, 217
points

rigid transformation of, 35, 36, 417
rotational transformation of, 25
versus vectors, 21, 36, 322

position control, 189–198
positive definite functions, 182
positive span, 225, 230
positively dependent, 225
potential energy for an open-chain manip-

ulator, 169
prehensile grasp, 260
prismatic joint, 40, 81, 84

twist associated with, 48, 87
product of exponentials formula, 82, 85–

91
basic formula, 87
choice of base frame, 91
versus Denavit-Hartenberg parame-

ters, 93
dynamics using, 175, 207
independence of order of joint mo-

tions, 146
independence on order of joint mo-

tions, 86
manipulator Jacobian using, 116

projection maps, 75
prosthetic hands, 10

453

pseudo-inverse for resolving redundancy,
130

pull back map, 407, 408
PUMA manipulator, 4, 6

zz, see also elbow manipulator
pure quaternion, 74
pure rolling, 249, 252, 338
push forward map, 407

quaternions, 33–34, 74

rank of structure equations, 134
rate of convergence, 181, 184
reachable set, 318, 320
reachable workspace, 95
reciprocal product, 66
reciprocal screws, 66–69

definition, 66
systems of, 69, 78
use in analyzing mechanisms, 67, 69,

126
redundant manipulators, 122

dynamics, 286–290
in grasping, 238
kinematic versus actuator redundancy,

286
kinematics, 129–132

reference configuration, 87
choice of, 91

regular distribution, 325
regular filtration, 340
relative curvature form, 250
relative growth vector, 341
relative motion, representation using the

exponential map, 42
revolute joint, 81, 84

twist associated with, 48, 87
right-handed coordinate frame, 22
rigid bodies, 20

dynamics, 165–167
inertial properties, 160–163
kinetic energy, 161

rigid body motion, 34–50
definition of, 20
representation using SE(3), 35, 416
representation using body-fixed frame,

22
rigid body transformations, 20–22

actions on points and vectors, 21,
35–37, 417

composition rule, 37
formal definition, 21
group properties, 37
homogeneous representation, 36
planar, 76

rigid body velocity, 53–61, 418–420

rigid displacement, 20
rigid transformations, see rigid body trans-

formations
robot, origin of word, 1
robustness of control laws, 190
Rodrigues’ formula, 28, 76
roll, pitch, yaw angles, 32
rolling contact kinematics, 242–255
rolling penny, see disk rolling on a plane
rotation about a line, 38, 87, 99

as a screw motion, 49
twist coordinates, 43

rotation about two axes, 100
rotation group, 24
rotation matrices, 23

actions on points and vectors, 25
eigenvalues of, 30
properties of, 23–26, 73

rotation to a given distance, 102
rotational motion, 22–34

composition rule, 25
equivalent axis representation, 31
Euler angle representation, 31
exponential coordinates, 27–31
about a fixed axis, 27, 29
parameterization singularities, 31, 32
planar, 75
quaternion representation, 33
representation using rotation matri-

ces, 23
rotational velocity, 51–53

body versus spatial, 52

Salisbury Hand, 11, 12
SCARA manipulator, 6, 83

dynamics, 177
forward kinematics, 87, 92
grasp using, 240, 291
inverse kinematics, 106
manipulator Jacobian, 118, 120, 122

screw motions, 19, 45, 46
instantaneous velocity of, 57

screw system, 68
screw theory

advantages of, 20
origins of, 19

screws, 45–50
associated with wrenches, 64
Chasles’ theorem, 49
geometric attributes of, 45–46
infinite pitch, 48
rigid body transformations associated

with, 46
twists associated with, 48

SE(3), 35, 409
bi-invariant quadratic forms, 425

454

bi-invariant volume forms, 431
hyperbolic metric, 426
invariant metrics, 423
lack of bi-invariant metric, 427
metric properties, 422

se(3), 40, 411
second fundamental form, 245
second-order controllable systems, 361
self-motion manifold, 130
separating hyperplane, 226
setpoint stabilization, 193
singular configurations, 123, 151

for parallel manipulators, 134
singular values of a matrix, 128, 148
singularities, see kinematic singularities
skew-symmetric matrices, 27

properties of, 26, 28, 73
for representing cross product, 26

slider-crank mechanism, 151, 203, 314
sliding, 249, 268
small-time locally controllable, see locally

controllable
SO(3), 24, 409

zz, see also rotation matrices
so(3), 28, 411

zz, see also skew-symmetric matri-
ces

soft-finger contact, 217
space robots, 334, 342, 351, 396
spatial angular velocity, 52
spatial frame, 51
spatial manipulator Jacobian, see manip-

ulator Jacobian
spatial operator algebra, 207
spatial velocity, 54, 419

addition of, 58, 422
geometric interpretation, 54
relationship with body velocity, 55,

56, 61, 420
transformation of, 58, 421

spatial wrench, 63
special Euclidean group, see SE(3)
special orthogonal group, see SO(3)
sphere rolling on a plane, 252, 338, 343
sphere rolling on a sphere, 349
spherical joint, 81, 138
spherical wrist, 125

effect on workspace, 96
versus spherical joint, 139

spring mass system, 185, 187, 189
stability by linearization, 184
stability definitions, 179–181
stable, 179
Stanford manipulator, 2, 4, 147

manipulator Jacobian, 119
Stanford/JPL hand, see Salisbury Hand

Steinitz’s theorem, 230, 299
Stewart platform, 138–142, 153
strictly internal forces, 223
structurally dependent forces, 122, 239
structure equations, 132–134

for four-bar mechanism, 136
for Stewart platform, 140

supporting hyperplane, 226
surface models, 243

tangent space, 243, 404
teleoperation, 395
tendon kinematics, 293–300
tool frame, 84
torsion form, 246
trajectory generation, using manipulator

Jacobian, 117
trajectory tracking, see position control
translational motion, 34, 48
transpose of Jacobian, see Jacobian trans-

pose
twists, 19, 417

definition of, 41
geometric attributes, 45–50, 427
Lie bracket between, 175
parameterizing manipulators via, 91–

95
reciprocal to a wrench, 66
for revolute and prismatic joints, 87
screw coordinates, 47
screw motions corresponding to, 48
transformation of, 59, 77
twist coordinates, 41

two-link planar manipulator
constrained, 315
dynamics, 164
inverse kinematics, 97
moving in a slot, 203

U-joint, 153
uncertainty configuration, 137
underwater robots, 397
uniform stability, 179, 185
unit quaternions, 34, 74
unit twist, 49
Utah/MIT hand, 10, 12, 212

variable geometry truss, 152
vector field, 322, 406
vectors, 21

versus points, 21, 36
rigid transformation of, 21, 37, 417
rotational transformation of, 25

velocity
end-effector, 115
rigid body, see rigid body velocity

455

rotational, see rotational velocity
of a screw motion, 57

velocity of a point
attached to end-effector, 117
for rotational motion, 52

virtual displacement, 271
virtual reality, 396
virtual work, 271
viscous friction, 170
volume forms on SE(3), 430

work, between twist and wrench, 61
workspace control, 156, 195–198, 209

versus joint space control, 195, 198
workspace dynamics, 197, 282
workspace of a manipulator, 95–97, 432

dextrous, 95, 129
maximal, 433

wrench basis for a contact, 217, 235
wrenches, 19, 61–66, 420

addition of, 63
body and spatial representations, 63
reciprocal to a twist, 66
screw coordinates of, 64
transformation of, 62, 422

zero pitch screw, 48, 66

456

