
Advanced Control for Robotics (fall 2024)
 Lecture Note 0

Introduction to Neural Network

1

Prof. Wei Zhang
Southern University of Science and Technology

§ This lecture: introduction to neural network

• What is a neural network?

• Key components of neural networks

• A basis neural network structure: MLP

• Loss functions for neural network learning

• Optimizer in Neural Network Training

• Construct a machine learning task in PyTorch

2

What is a neural network
• A neural network is a mathematical model to approximate complex

functions.

𝑦 = 𝑓(𝑥; 	𝜃)
• Approximate a function 𝑓(𝑥) that maps input data 𝑥 to output 𝑦 using

numerical optimization:
- !𝜃 = arg	min𝜃	ℒ(𝑓 𝑥; 	𝜃 , 𝑦)	,

 where 𝜃 is the function’s parameter
3

Key Components of Neural Networks
• Neural	networks	consist	of	several	key	components	that	works	together.
- Data
- Network	structures:	MLP/CNN	etc.
- Loss	calculation
- Back	propagation
- Optimization

4

What is a neural network
• Visual	example:	curve	fitting.	

5

§ A Common Network Structure: Multi-layer Perceptron (MLP)
• There are lots of neural network structures, today we introduce one of

the most used structure: the multi-layer perceptron.

6

§ A Common Network Structure: Multi-layer Perceptron (MLP)
• Basic structure of MLP

Input – Linear layer – Activation function – Linear layer …. Linear layer- Output

- Linear layer / full connected layer
- 𝑦 = 𝑊𝑥 + 𝑏

- Activation functions 𝑔(M): introduce non-linearity.
- Why use activation functions? (e.g. ReLu 𝑔 𝑥 = max(0, 𝑥))
- Simplest MLP:

- 𝑦 = 𝑊2𝑔1 𝑊1𝑥 + 𝑏1 + 𝑏2

7

𝑥 𝑦

𝑥 𝑦

§ A Common Network Structure: Multi-layer Perceptron (MLP)
• Commonly Activation functions

8

𝑥 𝑦

§ A Common Network Structure: Multi-layer Perceptron (MLP)
• Commonly Activation functions

- Outputs values in the range (0,1).
- Useful for probabilistic interpretation in binary classification.
- Can cause vanishing gradient problem in deep networks.

9

𝑥 𝑦

§ A Common Network Structure: Multi-layer Perceptron (MLP)
• Commonly Activation functions

- Outputs values in the range (-1,1).
- Zero-centered, more balanced mapping compared to Sigmoid
- Still can cause vanishing gradient.

10

𝑥 𝑦

§ A Common Network Structure: Multi-layer Perceptron (MLP)
• Commonly Activation functions

- Computation efficient
- Gradient is 0 when the input smaller than 0.

- Sparse propagation
- Dead neurons

- Gradient discontinuous when 𝑧 = 0.

11

𝑥 𝑦

§ A Common Network Structure: Multi-layer Perceptron (MLP)
• Commonly Activation functions

- Computation efficient
- Gradient is not continuous in at 𝑧 = 0

12

§ A Common Network Structure: Multi-layer Perceptron (MLP)
• Basic structure of MLP

Input – Linear layer – Activation function – Linear layer …. Linear layer- Output

- Simplest MLP:
- 𝑦 = 𝑊2𝑔1 𝑊1𝑥 + 𝑏1 + 𝑏2

• Practice: simple MLP，suppose we use ReLu() as the activation.

13

𝑥 𝑦

§ A Common Network Structure: Multi-layer Perceptron (MLP)
• Practice: write a simple MLP in PyTorch
- Import necessary packages

- Understand how to create different layers
 Linear layer:

*Note that PyTorch use 𝑦 = 𝑥𝑊! + 𝑏 instead
*Suppose we have 𝑥	 ∈ 	𝑅"×$, and we want	𝑦	 ∈ 	𝑅"×%, nn.Linear(3, 5) set
the 𝑊 ∈ 	𝑅$×%, 𝑏 ∈ 	𝑅&×%

 Activation function:

14

§ A Common Network Structure: Multi-layer Perceptron (MLP)
• Practice
- Write a simple MLP in PyTorch

- Verify the behavior of our manual MLP and the PyTorch MLP (e.g. 𝑥 is a
set of two points [−1,1,2 , 2, −1,0])

15

§ Loss Functions for Neural Network Training
• Loss functions measure how well a neural network’s predictions match

the actual target values.
• They guide the optimization process during training, allowing the

model to learn by minimizing the error.

16

§ Loss Functions for Neural Network Training
• Mean Squared Error (MSE)
- Measures the average squared difference between predicted and actual

values.
- Formular:

where 𝑦𝑖 is the actual value, X𝑦' is the predicted value, and 𝑛 is the number
of samples.

- Used in regression tasks where the goal is to predict continuous values.
- Sensitive to outliers.
- Converge fast when error is large

• Code example
17

§ Loss Functions for Neural Network Training
• Mean Absolute Error (MAE) / L1 Loss
- Measures the average absolute difference between predicted and actual

values.
- Formular:

where 𝑦𝑖 is the actual value, X𝑦' is the predicted value, and 𝑛 is the number
of samples.

- Used in regression tasks where the goal is to predict continuous values.
- Can lead to less stable convergence
- Less sensitive to outliers
- Code example

18

§ Loss Functions for Neural Network Training
• Kullback-Leibler (KL) Divergence Loss
- Measures how one probability distribution diverges from a second,

expected probability distribution.
- Formular: 𝐷()(𝑃| 𝑄 = ∑' 𝑃 𝑖 log(!(#)%(#))

where 𝑃 is the true distribution, 𝑄 is the predicted distribution, 𝑖 represent
each elements.
- Examples

𝑃 = [0.4, 0.6], Q = 0.3, 0.7
 𝐷()(𝑃| 𝑄 = 0.4 log &.(&.)+ 0.6 log

&.*
&.+

19

§ Loss Functions for Neural Network Training
• Kullback-Leibler (KL) Divergence Loss
- Measures how one probability distribution diverges from a second,

expected probability distribution.
- Formular: 𝐷()(𝑃| 𝑄 = ∑' 𝑃 𝑖 log(!(#)%(#))

where 𝑃 is the true distribution, 𝑄 is the predicted distribution, 𝑖 represent
each elements
- 𝐷()(𝑃| 𝑄 ≠ 𝐷()(Q| P
- Pros
- Useful for variational autoencoders and reinforcement learning, minimizing

KL Divergence helps in better fitting the model to the true data distribution.
- Can be extended to continuous distributions and is often used in cases

where distributions are not discrete.
- Cons
- Not sensitive to large 𝑄 𝑖 when 𝑃(𝑖) close to zero.

20

§ Loss Functions for Neural Network Training
• Cross-Entropy Loss (Categorical Loss)
- Cross-entropy loss measures the difference between two probability

distributions – the predicted probability from the model and the true
distribution (one-hot encoded labels)
- Formular:

CEL = −g
'*&

+

𝑦' log h𝑦'

where 𝐶 is the number of classes, 𝑦𝑖 is the true label (1 if the class is
correct, otherwise 0), X𝑦' is the predicted probability for the category.
- Loss curve

21

§ Loss Functions for Neural Network Training
• Practice of Cross-Entropy Loss CEL = −∑!"#

$ 𝑦! log C𝑦!
- Suppose we have 3 categories, and 2 samples.
- Labels: 0,1 , prediction raw output: [2.0, 1.0, 0.1 , 0.1, 2.0, 1.0],
- Manual calculation
 Step 1: map the raw output to probability distribution

 Softmax z 𝑖 =
,,#

∑-./
0 ,,-

	

 Step 2: Calculate cross-entropy loss

- Calculate CEL in PyTorch

22

§ Optimizer in Neural Network Training
• The optimizer adjusts the network parameters by taking a step in the

direction that minimizes the loss, using the gradients and a specified
learning rate.

23

§ Optimizer in Neural Network Training
• Denoting the learning rate as 𝛼, this process follows the general

formula:
𝜃 = 𝜃 − 𝛼 F ∇"𝐽 𝜃

where 𝜃 represents the network parameter, and ∇.𝐽(𝜃) is the gradient of the
loss function.

• Learning rate is a key hyperparameter that controls how big a step the
optimizer takes in the direction of the gradient.
- Too high: may cause the model to “overshoot” the optimal parameters, and

the model might fail to converge or oscillate.
- Too low: may take a long time to converge, or even get stuck in a local

minimum.

24

§ Optimizer in Neural Network Training
• Stochastic Gradient Descent (SGD)
- Gradient Descent uses the entire dataset to compute gradients for updating

the parameters.
- SGD updates the parameters using one mini-batch of data at a time,

making it faster and more efficient for large datasets.
- Formula:

𝜃 = 𝜃 − 𝛼 M ∇.𝐽 𝜃; 𝑥' , 𝑦'
 where (𝑥' , 𝑦') is a random minibatch from the dataset.
- Advantages

- Faster updates
- Can help escape local minima by introducing noise

- Disadvantages:
- May oscillate or struggle to converge.

- Code

- Other optimizers: Adam, RMSProp, etc.

25

§ Overall Structure: Code Flow
• Code example for a neural network training.

26

§ Construct a Machine Learning Task in PyTorch
• Practice: classification of handwritten digits

- Input: images, output: category
- Dataset: MNIST is a dataset of 70,000 handwritten digits, It consists of

60,000 training images and 10,000 test images, each 28x28 pixels in size,
with digits from 0 to 9.
- The goal is to classify each image into one of 10 categories (0 to 9).

27

§ Construct a Machine Learning Task in PyTorch
• Practice: classification of handwritten digits
- Loss: cross-entropy loss
- Model: MLP
- Input dimension: 28*28, output dimension: 10
- Import necessary packages

- Data preparation

28

§ Construct a Machine Learning Task in PyTorch
• Practice
- Construct a neural network model, loss, and optimizer

29

§ Construct a Machine Learning Task in PyTorch
• Practice
- Write the training loop

30

§ Construct a Machine Learning Task in PyTorch
• Practice
- Write the test function

31

§ Construct a Machine Learning Task in PyTorch
• Homework
- Design your own MLP for handwritten digits classification to achieve at

least 95% accuracy.
- Dataset: MNIST
- You could change hidden layer numbers, hidden unit size, activation

functions, optimizers (web browser is your friend)
- Submit in Jupyter Notebook with necessary explanation and results.

REMEMBER TO SET THE RANDOM SEED so that the results can be
reproduced!
- Students achieved the top 3 accuracy will get bonus.
- Due: 27th September

32

