SDM5008 Advanced Control for Robotics

Lecture Note 9: Probability Review for Reinforcement Learning

Conditional probability
- linear algebra
- X-X probability (stochastic) $-$ offinization. **Prof. Wei Zhang**

Southern University of Science and Technology

zhangw3@sustech.edu.cn https://www.wzhanglab.site/

1

Outline

▪ **Probability and Conditional Probability**

■ Random Variables and Random Vectors

• Jointly Distributed Random Vectors and Conditional Expectation

What is probability? Woodeling uncertainty world is deterministic! A formal way to quantify the uncertainty of our knowledge $e^{i\omega}$ about the physical world there is no right on wrong probability

- **Formalism: Probability Space** (Ω, \mathcal{F}, P)
	- Ω : **sampling space**: a set of all possible outcomes (maybe infinite)
	- F : **event space**: collection of events of interest (event is a subset of Ω
	- **•** $P: \mathcal{F} \rightarrow [0,1]$ probability measure: assign event in \mathcal{F} to a real number between 0 and 1

$$
l_{j}
$$
. $l_{055 a}$ coin : $J = \{0, 1\}$, $J' = \{1, 5, 1\}$, $\{0, 1\}$
\n $l_{051 a}$ dir: $J = \{1, ..., b\}$, $J' = \{4, \{1\} \cdot \{1\}, \{1, 2\}, \{1, 3, ..., b\}\}$
\n $l_{051 a}$ dir: $J = \{1, ..., b\}$, $J' = \{4, \{1\} \cdot \{1\}, \{1, 2\}, \{1, 3, ..., b\}\}$
\n $l_{05} = \emptyset$ Prob(A)
\n $l_{01} = \emptyset$ (even ' , $A = \{4, 5, b\}$) Prob(A) = $\{0.5 \}$
\n $l_{02} = \emptyset$ 3
\n $l_{03} = \emptyset$ 3
\n $l_{04} = \emptyset$ (even ' , $A = \{4, 5, b\}$)

Axioms of probability:

 \blacktriangleright $P(A) \geq 0$ $P({31,3})=5.6$ ▪ ∩ = ∅ ⇒ ∪ = + $P(\Omega) = 1$

 $1266(\{1, 2, 3\})$ >0

-
- **Important consequences:**
	- ∅ = 0
	- **Law** of total probability: $P(B) = \sum_{i}^{n} P(B \cap A_i)$, for any partitions $\{A_i\}$ of Ω

• Recall a collection of sets $A_1, ..., A_n$ is called a partition of Ω if divide $\int_{\mathcal{R}} \ell^{an} \mathcal{M}^{\ell}$ \blacksquare $A_i \cap A_j = \emptyset$, for all $i \neq j$ (mutually exclusive)

 \blacksquare $A_1 \cup A_2 \cdots \cup A_n = \Omega$

 \int prob(B)= p(B(A)+ p() + p' 1)

 $-36+$

Conditional probability

• Probability of event A happens given that event B has already conditionerl probability measure occurred

$$
\bullet \left(P(A|B) \stackrel{\triangle}{=} \frac{P(A \cap B)}{P(B)} \right)^{p} \stackrel{C \neq \emptyset}{=} \bullet
$$

- **•** We assume $P(B) > 0$ in the above definition
- **What does it mean?**
	- Conditional probability is a probability: $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{P})$
	- "Conditional" means, $(\widetilde{\Omega}, \widetilde{\mathcal{F}}, \widetilde{P})$ the is derived from an original probability space (Ω, \mathcal{F}, P) given some event has occurred

• After *B* occurred we are uncertain only about the outcomes inside *B*

The stert with $(0, \beta, \beta)$ erginal probability space if $(0, \beta, \beta)$. The flows β , if β $\begin{array}{c} 29B=21, 5, 51 \\ P(B)=0.5 \end{array}$ => Bevent has occurred => new probability space $(\tilde{\mathcal{X}}, \tilde{\mathcal{Y}}, \tilde{\mathcal{P}})$
- $\tilde{\mathcal{Y}} = \mathcal{B}$, :.e. all the possible outcomes are in 13 $-\tilde{f}$ = all subsets of B (e.g. $A = \{2, 6, 5\}$ Agy \tilde{f} , but all $A \cap B \subseteq \tilde{f}$

What is β and γ be what γ be constant with the original β . By, β is always $\omega \ge 8$ \n																																												
Bayes rule: relate $P(A B)$ to $P(B A)$	$\Rightarrow \angle e \rightarrow \hat{f}$. $\beta(z) \ne 2$																																											
Figure 1	Bayes rule: relate $P(A B)$ to $P(B A)$	$\Rightarrow \angle e \rightarrow \hat{f}$. $\beta(z) \ne 2$																																										
Figure 2	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$	$\beta(z)$

▪ **Example of conditional probability**: A bowl contains 10 chips of equal size: 5 red, 3 white, and 2 blue. We draw a chip at random and define the event:

 $A =$ the draw of a red or a blue chip

Suppose you are told the chip drawn is not blue, what is the new probability of A

Outline

▪ Probability and Conditional Probability

▪ **Random Variables and Random Vectors**

• Jointly Distributed Random Vectors and Conditional Expectation

- **What is random variable and random vector?**
	- **Deterministic variable:**
		- e-J. Z is a deterministic variable, mean z can take
only one value (single-valued variable), which may or may hit be known
	- Random variable:

Let a be determining V curiable \in lk

How to specify probability measure

- Discrete random variable: probability mass function (pmf) e.g. toss a coin or die $\big|$ $\mathcal{L} = \{1, \dots, N\}$, $p(x) = |N_{\text{obs}}| / (x = 1)$ $\mathcal{A} = \{v, \cdot\}$ $F =$ swbsets of Λ β = $\delta \psi$
 β = β (A) = $\sum_{i \in A} \mathcal{P}(i)$
 $\gamma = \sum_{i \in A} \mathcal{P}(i)$

Continuous random variable: probability density function (pdf) $P(\triangleright) = 6.14$ γ (1)= 0.6
	-

e.g. temperature density
\n
$$
\chi
$$
 c/R, D=IR, Pdf: $f_X(x) = \int Y^a y^b y^b + \chi \rightarrow \chi$
\n χ f
\n χ (a) = $\int Y^a y^b$ g
\n χ f
\n χ (b) = $\int_{X^a} f_X(x) dx$
\nA

How to specify probability measure

- Random vector: scalar random variables listed according to certain order
- \blacksquare n-dimensional random vector: $X =$ X_1 X_2 $\ddot{\cdot}$ X_n
- Notation: We typically use capital to denote random variables (vectors) and lower case letter to denote specific values the random variable takes

$$
\begin{array}{ll}\n\text{density function:} & \text{if } (x) \text{ } x \in \mathbb{R}^n \\
\longleftrightarrow & \text{if } (x) \text{ } x \in \mathbb{R}^n \\
\longleftrightarrow & \text{if } x \text{ and } y \text{ within } \text{ for } \text{ if } (x_1, x_2, \dots, x_n)\n\end{array}
$$

$$
\int_X (\times) \approx \text{Prob } \chi = \chi
$$
\nprobability evaluation: $P(X \in A) = \int_A f(x) \, dx$

\n
$$
\int \int (\infty) \, dx \, dx
$$
\n
$$
\int \int (\infty) \, dx \, dx
$$
\n
$$
\int \int (\infty) \, dx \, dx
$$
\n
$$
\int \int (\infty) \, dx \, dx
$$

Expectation of a random vector
$$
X \in \mathbb{R}^n
$$
:
\nContinuous random vector: $E(X) \triangleq \int_{\mathbb{R}^n} xf(x) dx$
\n $\therefore \int_{\text{min}}^{\text{int}} \text{Discrete random vector: } E(X) \triangleq \sum_{x} x \cdot Prob(X = x)$
\n $E(X)$
\n $\sum_{x \in \mathbb{R}^n} f(x) dx$
\n $\sum_{x \in \mathbb{R}^n}$

Linearity of Expectation:

■ Expectation of *AX* with deterministic constant $A \in R^{m \times n}$ matrix: $E(AX) = AE(X)$ \bigcap

$$
E(AX) = \int (Ax) \cdot f(x) dx = A \int x f_x(x) dx = AE(x)
$$

- More generally, $E(AX + BY) = AE(X) + BE(Y)$
- Example: Suppose $X \in R^2$, $Y \in R^3$, with $E(X) =$ 0.5 $\begin{bmatrix} 0.5 \\ 0.25 \end{bmatrix}$, $E(Y) =$ 0.1 0.2 0.3 , $A=$ 1 1 0 1 , $B =$ 1 0 0 0 0 1 , Compute $E(AX + BY)$ $\begin{bmatrix} 1 & 1 \ 0 & 1 \end{bmatrix} \begin{bmatrix} 0.3 \\ 0.25 \end{bmatrix} + \begin{bmatrix} 0 & 0 \ 0 & 0 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$
 $\begin{bmatrix} 0 & 15 \\ 0.155 \end{bmatrix}$ 13

Outline

▪ Probability and Conditional Probability

■ Random Variables and Random Vectors

▪ **Jointly Distributed Random Vectors and Conditional Expectation**

Jointly distributed random vectors: $X \in R^{(n)}$, $Y \in R^{(n)}$

▪ Completely determined by joint density (mass) function: $(X, Y) \sim f_{XY}(x, y) \sim \sqrt[p]{\gamma}$

Compute probability:

$$
P((X, Y) \in A) = \int_A \mathcal{T}_{X}^{(X, y) \text{d}x \text{d}y}
$$

■ marginal density: $X \sim f_X(x)$, $Y \sim f_Y(y)$, where $f_X(x) = \int_{R_m} f_{XY}(x, y) dy$, $f_Y(y) = \int_{R_n} f_{XY}(x, y) dx$,

$$
\cong \sum_{all \; \rho \leq sib \mid \rho} [N^{\rho} \circ (X = \nu, \; \zeta \circ y)]
$$

- **Example:** $X = \begin{bmatrix} X_1 \\ Y_2 \end{bmatrix}$ X_2 , Prob $\left(X= \right)$ $\boldsymbol{0}$ 1 $=\frac{1}{2}$ $\frac{1}{2}$, Prob $\left(X =$ 1 2 $=\frac{1}{2}$ $\frac{1}{3}$, Prob $\left(X =$ −1 1 $=\frac{1}{6}$ 6
	- This is joint distribution for X_1, X_2

$$
mngmal \rightarrow X_{2}: X_{2} = 1
$$
 2
 $pmh(X_{1}) = \frac{2}{3} + \frac{1}{3}$

 \sim false

- The conditional density: $(X, Y) \sim f_{XY}(x, y)$
	- **•** Quantify how the observation of a value of Y, $Y = y$, affects your belief about the density of X

 $P(A | B)=P(A \cap B)/P(B) \Rightarrow p_{X|Y}(X = i | Y = j) = \sqrt{\frac{p_{XY}(X=i, Y=j)}{n_{XY}(X=i, Y=j)}}$

 $f_{XY}(x, y$

 $f_Y(y)$

 $\sum_i p_{xy}(X=i, Y=j)$

▪ The conditional probability definition implies (nontrivially)

 $f_{X|Y}(x|y) =$

 $\text{Law of total probability: } P(A) = \sum_{i=1}^{n} P(A \cap B_i) = \sum_{i=1}^{n} P(A|B_i)P(B_i)$ $f_X(x) =$ R^m $f_{X|Y}(x|y)f_Y(y)dy$ $f_Y(y) = |$ R^n $f_{Y|X}(y|x) f_X(x) dx$

■ *X* is independent of *Y*, denoted by $X \perp Y$,

if and only if
$$
f_{XY}(x, y) = f_X(x)f_Y(y)
$$

\n
$$
\text{Exp}(x|y) = \int_X (x) \iff \frac{\int_{XY}(x, y)}{\int_{XY}(y)} = \int_{X} (y) \implies \int_{XY}(y, y) = \int_{X} (x) \int_{Y} (y) \text{ for } y \neq 0
$$
\n
$$
\text{CLEAR Lab @ subset of } \mathcal{Y}
$$

Wei Zhang

Conditional expectation:

• The conditional mean of $(X|Y = y)$ is

$$
E(X|Y = y) = \int_{R^n} x f_{X|Y}(x|y) dx
$$

$$
E(X|Y = y) = \sum_{i} i \cdot Prob(X = i|Y = y)
$$

2 3 4 5 6 **E(X|Y = 1)** = 2. $\frac{1}{2}$ + 3. $\frac{1}{4}$ + $\frac{1}{4}$, $\frac{1}{4}$ = 1/4 1/8 1/8 2 1/6 1/12 1/12 3 1/12 1/24 1/24 ■ Example 1: **E(XIY = 2)** = $3\frac{1}{2} + 4\frac{1}{4} + 5\frac{1}{4} = \frac{15}{4}$ X Y

$$
\mathbf{E}(X|Y=3)=? \qquad \qquad \mathcal{F}_{X}(\mathcal{X},\mathcal{Y})=\int_{R}^{C} \mathcal{F}_{X}(\mathcal{X},\mathcal{Y})\in S
$$

Example 2: Suppose that (X, Y) is uniformly distributed on the square $S =$ $\{(x, y) : -6 < x < 6, -6 < y < 6\}$. Find $E(Y | X = x)$.

$$
f_{XY}(w,y) = \int \frac{1}{144} \times \alpha_{Y} eS
$$
\n
$$
= 6
$$
\n
$$
\int_{-6}^{1} \int_{-6}^{1} \times \alpha_{Y} eS
$$
\n
$$
= 6
$$
\n
$$
\int_{-6}^{1} \int_{0}^{1} \times \alpha_{Y} eS
$$
\n
$$
f_{Y|X}(y|x) = \frac{f_{XY}(x,y)}{f_X(x)} = \int_{X}^{1} \int_{0}^{1} \int_{0
$$

▪ Continue Example 1:

Example 3.: outcomes with equal chance: $(1,1)$, (2) , $(2,1)$ $(1,-1)$, $(0,0)$, with $g(X,Y) = X^2Y^2$ Method 1: $E(g(X, Y)) = E(X^2Y^2) = 1^2 \cdot (-1)^2 \cdot \frac{1}{6}$ $\frac{1}{6}$ + 1² · 1² · $\frac{1}{6}$ $\frac{1}{6}$ + 2² · 1² · $\frac{1}{6}$ $\frac{1}{6}$ \neq 1 Method 2: conditioning on values of $Y = -1, 0, 1$ $_{\star}E(X^2\zeta^2)=E\left(E(X^2\zeta^2|\zeta)\right)$ = $prob(F=1)E(X^{2} | Y=1) + prob(Y=0)$ $\frac{0^{2}(-1)^{2}p\sqrt{(x-1)(x-1)}}{1}+\frac{1^{2}(-1)^{2}p\sqrt{(x-1)(x-1)}}{1}+\frac{2^{2}(-1)^{2}p\sqrt{(x-1)}}{1}+2^{2}(-1)^{p\sqrt{6}}(\sqrt{x-1})$ 1) = $|2(1)^2 \cdot \frac{1}{2} + 2^2 \cdot |2 \cdot \frac{1}{2} = \frac{5}{2}$

E(x $x^2 = 1 \cdot \frac{1}{6} + \frac{5}{2} \times \frac{1}{3}$ = 1) X 0 1 2 $0 \t1/6 \t0$ 0 1/6 1/6 1/6 Y 1/6

• More discussions