SDM5008 Advanced Control for Robotics

Lecture 4: Instantaneous Velocity of Moving Frames

Prof. Wei Zhang

CLEAR Lab

Southern University of Science and Technology, Shenzhen, China https://www.wzhanglab.site/

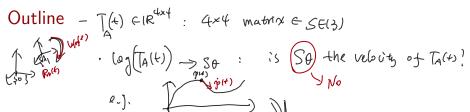
Outline

$$(w) = RR^{-1}$$

$$R^{-1} e$$

• Instantaneous Velocity of Rotating Frames

• Instantaneous Velocity of Moving Frames



Instantaneous Velocity of Rotating Frames

Instantaneous Velocity of Moving Frames

Objectives

Instantaneous Velocity of Rotating Frame (1/2)

• {A} frame is rotating with orientation $R_A(t)$ and velocity $\omega_A(t)$ at time t(Note: everything is wrt {O}-frame)

- $\hat{\omega} \theta \neq \omega_{\text{m}}^{(k)}$ Let $\underline{\hat{\omega}}\theta = \log(R_A(t))$ be its exp. coordinate. ("position" -vector)
 - Note: $\hat{\omega}\theta$ means $R_A(t)$ can be obtained from the reference frame (say $\{O\}$ -frame) by rotating about $\hat{\omega}$ by θ degree.

- $\hat{\omega}\theta$ only describes the current orientation of {A} relative to {O}, it does not contain info about how the frame is rotating at time t.

Instantaneous Velocity of Rotating Frame (2/2)

• What is the relation between $\omega_A(t)$ and $R_A(t)$?

$$\frac{d}{dt}R_A(t) = [\omega_A(t)]R_A(t) \Rightarrow \underbrace{[\omega_A(t)] = \dot{R}_A(t)R_A^{-1}(t)}_{A}(t)$$

$$\hat{R}_A(t) = \left[\hat{R}_A(t) \quad \hat{R}_A(t)\right]$$

$$\hat{y}_{A}(t) = w_{A} \times \hat{y}_{A} \leftarrow \text{coordinate free}$$

$$\hat{y}_{A}(t) = w_{A} \times \hat{y}_{A} \quad , \quad \hat{z}_{A} = w_{A} \times \hat{z}_{A}$$

$$\hat{y}_{A}(t) = w_{A} \times \hat{y}_{A} \quad , \quad \hat{z}_{A} = w_{A} \times \hat{z}_{A}$$

$$\hat{y}_{A}(t) = w_{A} \times \hat{y}_{A} \quad , \quad \hat{z}_{A} = w_{A} \times \hat{z}_{A}$$

Outline

• Instantaneous Velocity of Rotating Frames

• Instantaneous Velocity of Moving Frames

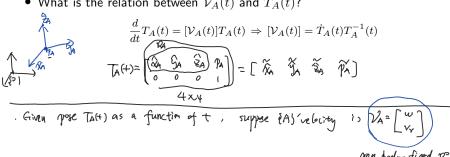
Instantaneous Velocity of Moving Frame (1/2)

• $\{A\}$ moving frame with configuration $T_A(t)$ at time t undergoes a rigid body Ta(t) = (R(t), Q(t)) (Note: everything is wrt {C} motion with velocity $\mathcal{V}_A(t) = (\omega, v)$ (Note: everything is wrt $\{O\}$ -frame)

• The exponential coordinate $\hat{S}\theta = \log(T_A(t))$ only indicates the current configuration of {A}, and does not tell us about how the frame is moving at time t.

Instantaneous Velocity of Moving Frame (2/2)

• What is the relation between $V_A(t)$ and $T_A(t)$?



$$\overset{\circ}{\cancel{X}} = \begin{bmatrix} w \times \cancel{X} \\ 0 \end{bmatrix} = \begin{bmatrix} w & v_{1} \\ 0 & v_{2} \end{bmatrix} \begin{bmatrix} \mathring{\cancel{X}}_{a} \\ 0 & v_{3} \end{bmatrix}$$

Similarly,
$$\hat{y} = [V_A] \hat{y}_A \cdot D \hat{y}_A = [V_A] \hat{y}_A \cdot O$$

$$\hat{\vec{p}}_{A} = \begin{bmatrix} \vec{p}_{A} \\ 0 \end{bmatrix}$$

$$= \sqrt{2} + \sqrt{2} \times \sqrt{2}$$

$$= \sqrt{2} + \sqrt{2} + \sqrt{2} \times \sqrt{2}$$

$$= \sqrt{2} + \sqrt{2} +$$