SDM5008 Advanced Control for Robotics Lecture 3: Exponential Coordinate of Rigid Body Configuration

Prof. Wei Zhang

Southern University of Science and Technology, Shenzhen, China

- Exponential Coordinate of SO(3)
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)

- Exponential Coordinate of SO(3)
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)

Towards Exponential Coordinate of SO(3)

- Recall the polar coordinate system of the complex plane:
 - Every complex number $z = x + jy = \rho e^{j\phi}$
 - Cartesian coordinate $(x,y)\leftrightarrow$ polar coorindate (ρ,ϕ)
 - For some applications, polar coordinate is preferred due to its geometric meaning.

• Consider a set
$$M = \{(t, \sin(2n\pi t)) : t \in (0, 1), n = 1, 2, 3, ...\}$$

= $M \leq |\mathbb{R}^{\perp}$
- $\gamma \in \mathbb{N}; \quad p = (\gamma p, \gamma p)$
- $Take advantage st structure of M
(sordinate of $\gamma : (1, \gamma p) \leftarrow (\gamma p, s) \wedge (2\pi \gamma p))$
 $p' \cdot (3, \gamma p') \leftarrow (\gamma p', sin (b\pi \gamma p'))$
Exponential Coordinate Advanced Control for Robotics Wei Zhang (SUSTech)$

4 / 17

Exponential Coordinate of
$$SO(3)$$

• Proposition [Exponential Coordinate \leftrightarrow SO(3)]
• For any unit vector $[\hat{\omega}] \in so(3)$ and any $\theta \in \mathbb{R}$,
 $e^{[\hat{\omega}]\theta} \in SO(3)$
• For any $R \in SO(3)$, there exists $\hat{\omega} \in \mathbb{R}^3$ with $||\hat{\omega}|| = 1$ and $\hat{\theta} \in \mathbb{R}$ such that
 $R = e^{[\hat{\omega}]\theta}$

exp:
$$[\hat{\omega}]\theta \in so(3) \xrightarrow{\ell \times \ell} R \in SO(3)$$

log: $R \in SO(3) \xrightarrow{[\mathfrak{O}] (\cdot)} [\hat{\omega}]\theta \in so(3)$

- The vector $(\hat{\omega}\theta)$ is called the *exponential coordinate* for R
- The exponential coordinates are also called the canonical coordinates of the rotation group SO(3)

F

Rotation Matrix as Forward Exponential Map

• Exponential Map: By definition

$$e^{[\omega]\theta} = I + \theta[\omega] + \frac{\theta^2}{2!} [\omega]^2 + \frac{\theta^3}{3!} [\omega]^3 + \cdots \quad \neg \quad ()$$

• Rodrigues' Formula: Given any unit vector $[\hat{\omega}] \in so(3)$, we have

Examples of Forward Exponential Map

• Rotation matrix $R_x(\theta)$ (corresponding to $\hat{x}\theta$) ax b= (a) b $\hat{\mathcal{N}} = \begin{bmatrix} i \\ 0 \\ 0 \end{bmatrix} \implies \hat{\mathcal{N}} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix} \implies \hat{\mathcal{N}}_{\mathcal{N}}(0) \succ \hat{\mathcal{N}}_{\mathcal{N}}(\hat{\mathcal{N}};0)$ = p[2]0 =) $\mathbb{R}_{X}(9)$: It sing $\begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 \\ 0 & 1 \end{bmatrix}$ + $(1 - (0,0) \begin{bmatrix} 0 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & (0,0) & -1 \\ 0 & (0,0) \end{bmatrix}$ • Rotation matrix corresponding to $(\underbrace{1,0,1}_{\text{exp}})^T$ confinste $\hat{\omega} \theta = \begin{bmatrix} i \\ i \end{bmatrix}$, $\hat{\omega} = \frac{1}{2} \begin{bmatrix} i \\ i \end{bmatrix}$, $\theta = 5$ $\begin{bmatrix} i \\ o \\ i \end{bmatrix} \longrightarrow R = e^{\begin{bmatrix} i \\ c \end{bmatrix} \theta} = \begin{bmatrix} i \\ c \\ c \end{bmatrix}$

 $\alpha = \begin{bmatrix} \alpha_i \\ \alpha_i \end{bmatrix}$

Logarithm of Rotations

• If R = I, then $\theta = 0$ and $\hat{\omega}$ is undefined.

• If $\operatorname{tr}(R) = -1$, then $\theta = \pi$ and set $\hat{\omega}$ equal to one of the following $\frac{1}{\sqrt{2(1+r_{33})}} \begin{bmatrix} r_{13} \\ r_{23} \\ 1+r_{22} \end{bmatrix}, \frac{1}{\sqrt{2(1+r_{22})}} \begin{bmatrix} r_{12} \\ 1+r_{22} \\ r_{23} \end{bmatrix}, \frac{1}{\sqrt{2(1+r_{11})}} \begin{bmatrix} 1+r_{11} \\ r_{21} \\ r_{23} \end{bmatrix}$

• Otherwise, $\theta = \cos^{-1} \left(\frac{1}{2} (\operatorname{tr}(R) - 1) \right) \in [0, \pi) \text{ and } [\hat{\omega}] = \frac{1}{2 \sin(\theta)} (R - R^T)$ Given any $R \in So(s)$ find $\hat{\mathcal{W}} \theta$ such $e^{\int \hat{\omega} d \theta} = R$ $e \times p(\cdot)$

- Exponential Coordinate of SO(3)
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)

Euler Angle Representation of Rotation

- A common method of specifying a rotation matrix is through three independent quantities called **Euler Angles**.
- Euler angle representation
 - Initially, frame $\{0\}$ coincides with frame $\{1\}$
 - Rotate {1} about \hat{z}_0 by an angle α , then rotate about \hat{y}_a axis by β , and then rotate about the \hat{z}_b axis by γ . This yields a net orientation ${}^{0}R_1(\alpha,\beta,\gamma)$ parameterized by the ZYZ angles $(\alpha,\beta,\gamma) \longleftrightarrow {}^{\circ}R_1(\gamma)$

Other Euler-Like Parameterizations

- Other types of Euler angle parameterization can be devised using different ordered sets of rotation axes
- Common choices include:
 - ZYX Euler angles: also called Fick angles or yaw, pitch and roll angles
 - YZX Euler angles (Helmholtz angles)

- Exponential Coordinate of SO(3)
- Euler Angles and Euler-Like Parameterizations
- Exponential Coordinate of SE(3)

Exponential Map of se(3): From Twist to Rigid Motion

Theorem 1 [Exponential Map of se(3)]: For any $\mathcal{V} = (\omega, v)$ and $\theta \in \mathbb{R}$, we have $\underbrace{e^{[\mathcal{V}]\theta}}_{\leftarrow} \in \underbrace{SE(3)}_{\leftarrow} \in \mathbb{C}^{\mathbb{R}}_{\bullet} \stackrel{g}{\circ} \Big]$ • Case 1 ($\omega = 0$): $e^{[\mathcal{V}]\theta} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}$

• Case 2 ($\omega \neq 0$): without loss of generality assume $\|\omega\| = 1$. Then

$$e^{[\mathcal{V}]\theta} = \begin{bmatrix} e^{[\omega]\theta} & G(\theta)v \\ 0 & 1 \end{bmatrix}, \text{ with } G(\theta) = I\theta + (1 - \cos(\theta))[\omega] + (\theta - \sin(\theta))[\omega]^2 \quad (1)$$
For any twist $\mathcal{V}, \quad \theta \longrightarrow e^{\mathcal{V}} \theta \in S\overline{\varepsilon}(\theta)$

Log of SE(3): from Rigid-Body Motion to Twist

Theorem 2 [Log of SE(3)]: Given any $T = (R, p) \in SE(3)$, one can always find twist $S = (\omega, v)$ and a scalar θ such that

$$e^{[\mathcal{S}]\theta} = T = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix}$$

Matrix Logarithm Algorithm:

- If R = I, then set $\omega = 0$, v = p/||p||, and $\theta = ||p||$.
- Otherwise, use matrix logarithm on SO(3) to determine ω and θ from R. Then v is calculated as $v = G^{-1}(\theta)p$, where

$$G^{-1}(\theta) = \frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cos\frac{\theta}{2}\right)[\omega]^2$$

Exponential Coordinates of Rigid Transformation

• To sum up, screw axis $\mathcal{S} = (\omega, v)$ can be expressed as a normalized twist; its matrix representation is

$$\left[\mathcal{S}\right] = \left[\begin{array}{cc} \left[\omega\right] & v\\ 0 & 0\end{array}\right] \in se(3)$$

- A point started at p(0) at time zero, travel along screw axis S at unit speed for time t will end up at $\tilde{p}(t) = e^{[S]t}\tilde{p}(0)$
- Given S we can use Theorem 1 to compute $e^{[S]t} \in SE(3)$;
- Given $T \in SE(3)$, we can use Theorem 2 to find $S = (\omega, v)$ and θ such that $e^{[S]\theta} = T$.
- We call $S\theta$ the **Exponential Coordinate** of the homogeneous transformation $T \in SE(3)$ and $T \in SE(3)$

More Space

More Space