SDM5008 Advanced Control for Robotics Lecture 3: Exponential Coordinate of Rigid Body Configuration

Prof. Wei Zhang

Southern University of Science and Technology, Shenzhen, China

Outline

• [Exponential Coordinate of](#page-2-0) $SO(3)$

- [Euler Angles and Euler-Like Parameterizations](#page-8-0)
- [Exponential Coordinate of SE\(3\)](#page-11-0)

Outline

• [Exponential Coordinate of](#page-2-0) $SO(3)$

- [Euler Angles and Euler-Like Parameterizations](#page-8-0)
- [Exponential Coordinate of SE\(3\)](#page-11-0)

Towards Exponential Coordinate of SO(3)

- Recall the polar coordinate system of the complex plane:
	- Every complex number $z = x + jy = \rho e^{j\phi}$
	- Cartesian coordinate $(x, y) \leftrightarrow$ polar coorindate (ρ, ϕ)
	- For some applications, polar coordinate is preferred due to its geometric meaning.

\n- \n
$$
\mathsf{OM} = \{ (t, \sin(2n\pi t)) : t \in (0, 1), n = 1, 2, 3, \ldots \}
$$
\n
\n- \n
$$
\mathsf{OM} \subseteq \mathbb{R}^2
$$
\n

Exponential Coordinate of $SO(3)$	$SO(3) = \{Re\in$ \mathbb{R}^{25} .
Proposition [Exponential Coordinate $\leftrightarrow SO(3)$]\n	$Re^{T}R \circ I$ \n
For any unit vector $[\hat{\omega}] \in so(3)$ and any $\theta \in \mathbb{R}$,	$\mathbb{R} \subseteq \{ker \times \text{Mult } R\} = 1$ \n
For any $R \in SO(3)$, there exists $\hat{\omega} \in \mathbb{R}^3$ with $ \hat{\omega} = 1$ and $\hat{\theta} \in \mathbb{R}$ such that\n	
$R = e^{[\hat{\omega}]\theta}$	$R = e^{[\hat{\omega}]\theta}$

$$
\begin{array}{ll}\n\exp: & [\hat{\omega}]\theta \in so(3) & \stackrel{\mathcal{Q} \times \mathcal{K}}{\longleftrightarrow} & R \in SO(3) \\
\log: & R \in SO(3) & \stackrel{\mathcal{Q} \times \mathcal{K}}{\longrightarrow} & [\hat{\omega}]\theta \in so(3)\n\end{array}
$$

- The vector $\left(\hat{\omega}\theta\right)$ is called the *exponential coordinate* for R
- The exponential coordinates are also called the canonical coordinates of the rotation group $SO(3)$

Rotation Matrix as Forward Exponential Map

• Exponential Map: By definition

$$
e^{[\omega]\theta} = I + \theta[\omega] + \frac{\theta^2}{2!}[\omega]^2 + \frac{\theta^3}{3!}[\omega]^3 + \cdots
$$

• Rodrigues' Formula: Given any unit vector $[\hat{\omega}] \in so(3)$, we have

Examples of Forward Exponential Map

• Rotation matrix $R_x(\theta)$ (corresponding to $\hat{x}\theta$) dx $b = (a)$ b $\hat{\mathcal{N}} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \implies [\hat{\mathcal{N}}] = \begin{bmatrix} \hat{\mathcal{D}} & \hat{\mathcal{O}} & \hat{\mathcal{O}} \\ \hat{\mathcal{O}} & \hat{\mathcal{O}} & \hat{\mathcal{O}} \\ \hat{\mathcal{O}} & \hat{\mathcal{O}} & \hat{\mathcal{O}} \end{bmatrix} \implies \hat{\mathcal{R}}_{\mathcal{N}}(\hat{\mathcal{O}}) \approx \hat{\mathcal{R}} + (\hat{\mathcal{N}}; \hat{\mathcal{O}})$ $= e^{(\lambda)\theta}$ $\Rightarrow Q_{\alpha}(9) = 1 + \sin\theta \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} + (1 - \cos\theta) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$ • Rotation matrix corresponding to $(\underbrace{1,0,1}_{\text{CYP}})^T$

$$
\widehat{\omega}\theta = \begin{bmatrix} \stackrel{\bullet}{\cdot} \\ \stackrel{\bullet}{\cdot} \end{bmatrix} , \widehat{\omega} = \frac{1}{\pi} \begin{bmatrix} \stackrel{\bullet}{\cdot} \\ \stackrel{\bullet}{\cdot} \end{bmatrix} , \widehat{\theta} = \overline{12}
$$

$$
\begin{bmatrix} \stackrel{\bullet}{\cdot} \\ \stackrel{\bullet}{\cdot} \end{bmatrix} \longrightarrow R = 0
$$

 $A = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix}$

Logarithm of Rotations

• If $R = I$, then $\theta = 0$ and $\hat{\omega}$ is undefined.

• If $tr(R) = -1$, then $\theta = \pi$ and set $\hat{\omega}$ equal to one of the following

$$
\frac{1}{\sqrt{2(1+r_{33})}}\left[\begin{array}{c}r_{13}\\r_{23}\\1+r_{33}\end{array}\right], \frac{1}{\sqrt{2(1+r_{22})}}\left[\begin{array}{c}r_{12}\\1+r_{22}\\r_{32}\end{array}\right], \frac{1}{\sqrt{2(1+r_{11})}}\left[\begin{array}{c}1+r_{11}\\r_{21}\\r_{31}\end{array}\right]
$$

• Otherwise, $\theta = \cos^{-1}\left(\frac{1}{2}(\text{tr}(R) - 1)\right) \in [0, \pi)$ and $[\hat{\omega}] = \frac{1}{2\sin(\theta)}(R - R^T)$ $e \times p(\cdot)$

• [Exponential Coordinate of](#page-2-0) $SO(3)$

• [Euler Angles and Euler-Like Parameterizations](#page-8-0)

• [Exponential Coordinate of SE\(3\)](#page-11-0)

Euler Angle Representation of Rotation

- A common method of specifying a rotation matrix is through three independent quantities called Euler Angles.
- \bullet Euler angle representation
	- Initially, frame $\{0\}$ coincides with frame $\{1\}$ \mathbf{t}
	- Rotate $\{1\}$ about \hat{z}_0 by an angle α , then rotate about \hat{y}_a axis by β , and then if α , then lotate about α_0 by an angle α , then lotate about y_a axis by ρ , and rotate about the \hat{z}_b axis by γ . This yields a net orientation ${}^0R_1(\alpha,\beta,\gamma)$ parameterized by the ZYZ angles $(\alpha, \beta, \gamma) \Longleftrightarrow \ ^{\circ} \mathcal{R}_{l}$ (

$$
{}^{\circ}R_1(\alpha,\beta,\gamma)=\underbrace{R_z(\alpha)}_{\sim\sim\sim\sim\sim R_z}R_y(\beta)\underbrace{R_z(\gamma)}_{\circ} \overline{R_1(\alpha,\beta,\delta)} = \underbrace{R_1(\hat{s},\lambda)}_{\circ}R_2(\hat{s},\lambda)}.
$$

Other Euler-Like Parameterizations

- Other types of Euler angle parameterization can be devised using different ordered sets of rotation axes
- Common choices include:
	- ZYX Euler angles: also called Fick angles or yaw, pitch and roll angles
	- YZX Euler angles (Helmholtz angles)

Outline

• [Exponential Coordinate of](#page-2-0) $SO(3)$

- [Euler Angles and Euler-Like Parameterizations](#page-8-0)
- [Exponential Coordinate of SE\(3\)](#page-11-0)

Exponential Map of $se(3)$: From Twist to Rigid Motion

Theorem 1 [Exponential Map of $se(3)$]: For any $\mathcal{V} = (\omega, v)$ and $\theta \in \mathbb{R}$, we have $e^{|\mathcal{V}|\theta} \in SE(3)$ • Case 1 $(\omega = 0)$: $e^{[\mathcal{V}]\theta} = \begin{bmatrix} I & v\theta \\ 0 & 1 \end{bmatrix}$

• Case 2 ($\omega \neq 0$): without loss of generality assume $\|\omega\| = 1$. Then

$$
e^{[\mathcal{V}]\theta} = \begin{bmatrix} e^{[\omega]\theta} & G(\theta)v \\ 0 & 1 \end{bmatrix}, \text{ with } G(\theta) = I\theta + (1 - \cos(\theta))[\omega] + (\theta - \sin(\theta))[\omega]^2 \quad (1)
$$

For any $t\omega^t s^t$ $\begin{bmatrix} \sqrt{2} & \theta & \sqrt{2} \\ \theta & \sqrt{2} & \theta & \sqrt{2} \\ 0 & \sqrt{2} & \sqrt{2} \end{bmatrix} \begin{bmatrix} \theta & \sqrt{2} & \theta \\ \theta & \sqrt{2} & \theta \end{bmatrix}$

Log of $SE(3)$: from Rigid-Body Motion to Twist

Theorem 2 [Log of $SE(3)$]: Given any $T = (R, p) \in SE(3)$, one can always find twist $\mathcal{S} = (\omega, v)$ and a scalar θ such that

$$
e^{[\mathcal{S}]\theta} = T = \left[\begin{array}{cc} R & p \\ 0 & 1 \end{array} \right]
$$

Matrix Logarithm Algorithm:

- If $R = I$, then set $\omega = 0$, $v = p/||p||$, and $\theta = ||p||$.
- Otherwise, use matrix logarithm on $SO(3)$ to determine ω and θ from R. Then v is calculated as $v=G^{-1}(\theta)p$, where

$$
G^{-1}(\theta) = \frac{1}{\theta}I - \frac{1}{2}[\omega] + \left(\frac{1}{\theta} - \frac{1}{2}\cos\frac{\theta}{2}\right)[\omega]^2
$$

Exponential Coordinates of Rigid Transformation

• To sum up, screw axis $\mathcal{S} = (\omega, v)$ can be expressed as a normalized twist; its matrix representation is

$$
[\mathcal{S}] = \left[\begin{array}{cc} [\omega] & v \\ 0 & 0 \end{array} \right] \in se(3)
$$

- A point started at $p(0)$ at time zero, travel along screw axis S at unit speed for time t will end up at $\tilde{p}(t) = e^{[\mathcal{S}]}{}^t \tilde{p}(0)$
- Given S we can use Theorem 1 to compute $e^{[S]t} \in SE(3)$;
- Given $T \in SE(3)$, we can use Theorem 2 to find $S = (\omega, v)$ and θ such that $e^{[\mathcal{S}]\theta}=T.$
- We call $S\theta$ the **Exponential Coordinate** of the homogeneous transformation $T \in SE(3)$ $T \in SE(3)$ $T = e^{1370}$ $SO \in \mathbb{R}^6$

More Space

More Space