SDM5008 Advanced Control for Robotics

Lecture 1: Rigid Body Configuration and Velocity

Prof. Wei Zhang

School of Design and Manufactoring Southern University of Science and Technology, Shenzhen, China

Outline

- [Rigid Body Configuration](#page-2-0)
- [Rigid Body Velocity \(Twist\)](#page-13-0)

• [Geometric Aspect of Twist: Screw Motion](#page-24-0)

Free Vector

 ℓ

• Free Vector: geometric quantity with length and direction

$$
\nearrow \nearrow \quad \rightharpoonup \quad \searrow
$$

• Given a reference frame, y_c can be moved to a position such that the base of the arrow is at the origin without changing the orientation. Then the vector v can be represented by its coordinates v in the reference frame.

$$
\begin{array}{ccc}\n & \nearrow & \\
 & \searrow & \\
 & \
$$

• v denotes the physical quantity while ${}^A v$ denote its coordinate wrt frame ${A}$.

Point

• Point: p denotes a point in the physical space

• A point p can be represented by a vector from frame origin to p ${}^{\beta}P = {}^{\beta}(\widehat{a_{P}})$, ${}^{\beta}P = {}^{\beta}(\widehat{a_{P}})$ • ${}^A p$ denotes the coordinate of a point p wrt frame ${A}$

• When left-superscript is not present, it means the physical vector itself or the coordinate of the vector for which the reference frame is clear from the context.

Cross Product

Properties:

• Cross product or vector product of $a \in \mathbb{R}^3, b \in \mathbb{R}^3$ is defined as

$$
\underbrace{a \times b}_{\text{upperties:}} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix} = \begin{bmatrix} 0 & -b_1 & -b_1 \\ a_3 & 0 & -c_1 \\ -b_2 & a_1 & 0 \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} (1)
$$
\n
$$
= \begin{bmatrix} a \end{bmatrix}
$$
\n
$$
\begin{aligned}\n\text{properties:} \\
\begin{bmatrix} a \times b \end{bmatrix} = ||a|| ||b|| \sin(\theta) \\
\begin{bmatrix} a \times b \end{bmatrix} = ||b|| \sin(\theta) \\
\begin{bmatrix} a \times b \end{bmatrix} = b_1 \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \begin{bmatrix} a \times b \end{bmatrix} \\
\begin{bmatrix} a \times b \end{bmatrix} = \
$$

• $a \times b = -b \times a$ \bullet $a \times a = 0$

Skew symmetric representation

• It can be directly verified from definition that $a \times b = [a]b$, where

$$
\hat{A} = \hat{A}^{\mathsf{T}} \qquad [a] \triangleq \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix}
$$
 (2)
\n•
$$
a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \leftrightarrow [a]
$$

- $\bullet \ \ [a]=-[a]^T$ (called skew symmetric)
- $[a][b] [b][a] = [a \times b]$ (Jacobi's identity)

Rotation Matrix

- Frame: 3 coordinate vectors (unit length) $\hat{x}, \hat{y}, \hat{z}$, and an origin
	- $-\hat{x}, \hat{y}, \hat{z}$ mutually orthogonal $-\hat{\chi}^{\dagger} \hat{\zeta} = \hat{z}$ $-\hat{\chi}^{\dagger} \hat{\zeta} = \hat{z}$

-
$$
\hat{x} \times \hat{y} = \hat{z}
$$
 \Leftarrow right hard rule

• Rotation Matrix: specifies origntation of one frame relative to another

Special Orthogonal Group $SO(3)$ $5912)$

 \bullet Special Orthogonal Group: Space of Rotation Matrices in \mathbb{R}^n is defined as

$$
SO(n) = \{ R \in \mathbb{R}^{n \times n} : R^T R = I, \det(R) = 1 \}
$$

- $SO(n)$ is a group. We are primarily interested in $SO(3)$ and $SO(2)$, rotation groups of \mathbb{R}^3 and \mathbb{R}^2 , respectively.
- Group is a set G, together with an operation \bullet , satisfying the following group axioms: clock arithmetic

- **Closure:**
$$
a \in G, b \in G \Rightarrow a \cdot b \in G
$$

- Associativity: (a b) c = a (b c), ∀a, b, c ∈ G
- Identity element: $\exists e \in G$ such that $e \bullet a = a$, for all $a \in G$.
- Inverse element: For each $a \in G$, there is a $b \in G$ such that $a \bullet b = b \bullet a = e$, where e is the identity element.

 $\{\{0, 1, 2, 3\}$ "+"}

Use of Rotation Matrix (1/2)

- directly from definition. • Representing an orientation ${}^{A}R_{B}$: prientation of fish nelative to {A}
- Changing the reference frame ${}^A R_B$:
Given vector v, its coordinate in {A}, {18} cure ${}^A\!\mathcal{V}$, 18v

$$
Av = {}^{A}Re^{8}V
$$
 . $prost$. "coordinate – $free$ "
- we have only one vector V , $Av = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix}$, $8V = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}$

$$
\Rightarrow \alpha_1 \hat{v}_A + \alpha_2 \hat{y}_A + \alpha_3 \hat{z}_B = \beta_1 \hat{v}_B + \beta_2 \hat{y}_B + \beta_3 \hat{z}_B
$$

$$
\Rightarrow \alpha_1 \hat{v}_A + \alpha_2 \hat{y}_A + \alpha_3 \hat{z}_B = \beta_1 \hat{v}_B + \beta_2 \hat{y}_B + \beta_3 \hat{z}_B
$$

$$
\Rightarrow
$$
 express "phyries" in fa

 \equiv

se malysiks

Use of Rotation Matrix (2/2)

$$
d_{\lambda} \frac{A_{\lambda} A + A_{\lambda} A_{\lambda} A + A_{\lambda} A_{\lambda} A}{\lambda} = \beta_1 A_{\lambda} A + \beta_2 A B_{\lambda} + \beta_3 A B_{\lambda}
$$
\n
$$
= \begin{bmatrix} A_{\lambda} A & A_{\lambda} A & A_{\lambda} A \\ A & A_{\lambda} A & A_{\lambda} A \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} = \begin{bmatrix} A_{\lambda} A & A_{\lambda} A & A_{\lambda} A \\ A_{\lambda} A & A_{\lambda} A & A_{\lambda} A \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} \beta_1 \\ \gamma_2 \\ \gamma_3 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{bmatrix}
$$

$$
f_V = {^h\!R_s} \not\uplus \vee
$$

• Rotating a vector or a frame $\text{Rot}(\hat{\omega}, \theta)$: will be discussed in next lecture.

Rigid Body Configuration (pose)

• Given two coordinate frames ${A}$ and ${B}$, the configuration of B relative to A is determined by ${}^4R_{\mathcal{E}} = \lceil 4\hat{v}_\mathcal{R} \rceil - 1$ - ${}^{A}R_{B}$ and ${}^{A} \mathcal{O}_{B}$ $\widetilde{\mathcal{O}_{\!\mathbf{A}}\mathcal{O}_{\!\mathbf{B}}}$ $\omega_{\rm s} =$ • For a (free) vector r, its coordinates Ar and Br are related by $\mathbf{r} = \mathbf{R} \mathbf{r}$ or \mathbf{r}

Homogeneous Transformation Matrix

 \bullet Homogeneous Transformation Matrix: AT_B

$$
\frac{A_{\overline{p}}}{\overline{p}} = \frac{P_{\overline{p}} + \frac{P_{\overline{p}}}{P_{\overline{p}}}}{\frac{P_{\overline{p}}}{P_{\overline{p}}}} = \frac{P_{\overline{p}}}{\frac{P_{\overline{p}}}{P_{\overline{p}}}} = \frac{P_{\overline{p}}}{P_{\overline{p}}}
$$
\nHowever, no point $P_{\overline{p}} = \frac{P_{\overline{p}}}{P_{\overline{p}}}$, it is homogeneous coordinates: $\frac{P_{\overline{p}}}{P_{\overline{p}} = P_{\overline{p}}}$ and $\frac{P_{\overline{p}}}{P_{\overline{p}}}$ is defined as $\tilde{p} = \frac{P_{\overline{p}}}{P_{\overline{p}}}$. Given a vector $V \in \mathbb{R}^{3}$, it is home. Conclinate is $V = \begin{bmatrix} V \\ V \end{bmatrix}$ $V \in \mathbb{P}_{1} - \mathbb{P}_{2}$ $V \in \mathbb{P}_{1} - \mathbb{P}_{2}$ $V \in \mathbb{P}_{1} - \mathbb{$

y=ax
y=ax+b

Example of Homogeneous Transformation Matrix

 F_{-1}

 T°

Fixed frame ${a}$; end effector frame ${b}$, the camera frame ${c}$, and the workpiece frame ${d}$. Suppose $||p_c - p_b|| = 4$

2. Camera \cdot (ocation : \cdot or Γ_c = (\cdot Re \cdot \cdot Pe)

$$
Re = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \quad \gamma_{c} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}
$$

2. end of factor $\gamma_{c} = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$

Then
\n
$$
\begin{array}{c}\n\mathbf{r}_{e} \\
\mathbf{r}_{e} \\
\
$$

 $\sum_{i=1}^{n}$

• [Rigid Body Configuration](#page-2-0)

• [Rigid Body Velocity \(Twist\)](#page-13-0)

• [Geometric Aspect of Twist: Screw Motion](#page-24-0)

Rigid Body Velocity (1/3)

• Consider a rigid body in motion. The body has infinitely many points $\{p_i\}$ with different velocities $\{v_{p_i}\}$
 $v_{p_1} = \frac{q(\hat{p}_1 \cdot \hat{p}_1)}{(\hat{p}_1 \cdot \hat{p}_2)}$ and the body with different velocities $\{v_{p_i}\}\$
 $v_{p_i} = 3(7 \cdot \text{)}$
\n
$$
\underbrace{v_{p_i}}_{\forall p_i} = 3(7 \cdot \text{)}
$$

- They can be expressed by the same set of parameter
- Rigid body velocity (i.e. spatial velocity, twist) is one such parameterization

Rigid Body Velocity (2/3)

\n- \n Pure rotation case\n
$$
\mu_{\infty}
$$
\n Assume η , on the rotation axis\n $\sqrt{\eta_{2}} = \omega \times \overline{\eta_{2}} \overline{\eta_{1}}$ \n
\n- \n General motion\n $\sqrt{\eta_{2}} = \sqrt{\eta_{2}} \approx \frac{1}{2} (\eta_{2}, \omega) \approx \frac{\sqrt{\eta_{2}} = 0}{\sqrt{\eta_{2}}}$ \n
\n- \n General motion\n $\sqrt{\eta_{2}} = \overline{\eta_{2}}(k) = (\overline{\eta_{2}}(k) + \overline{\eta_{2}} \overline{\eta_{2}}(k)) = \frac{\sqrt{\eta_{2}} + \omega \times (\overline{\eta_{2}} \overline{\eta_{2}})}{\sqrt{\eta_{2}}}$ \n
\n- \n In this case, η_{2} is a reference point we use the axpress velocities \overline{f} all the distance points.\n
\n- \n What is η_{2} is the positive point, we have the axuptes vectors.\n
\n- \n What is η_{2} is the positive point, we have η_{2} is the positive point,

Rigid Body Velocity (3/3) •

Rigid Body Velocity: Spatial Velocity (Twist)

- How to represent a rigid body velocity?
	- Pick an arbitrary point(\hat{r}) (reference point), which may or may not be body-fixed
	- Define v_r as the velocity of the body-fixed point currently coincides with r

For any body-fixed point p on the body:
$$
v_p = v_r' + \omega \times (\overrightarrow{rp}) \in \text{Covlimate}
$$

- Spatial Velocity (Twist): $V_{\hat{p}} = (\omega, v_r)$
- Twist is a "physical" quantity (just like linear or angular velocity)
	- It can be represented in any frame for any chosen reference point (r)
- A rigid body with $\mathcal{V}_r = (\omega, v_r)$ can be "thought of" as translating at v_r while rotating with angular velocity ω about an axis passing through r
	- This is just one way to interpret the motion.

Spatial Velocity Representation in a Reference Frame

- Given frame $\{A\}$ and a spatial velocity \mathcal{Y} of body β
- \bigoplus $T_A = \{ R_A, O_A \}$ • Choose o_A (the origin of $\{A\}$) as the reference point to represent the rigid body velocity

$$
\mathcal{W}_{o_A} \hspace{-1mm}=\hspace{-1mm} (\begin{smallmatrix} A_{\omega}, A_{v_{o_A}} \end{smallmatrix})
$$

 ${}^A\mathcal{V}_{\mathcal{G}_{\mathcal{A}}}=\begin{bmatrix} {}^{\mu}{}_{\mathcal{U}} & {}^{\mu}{}_{\mathcal{U}} & {}^{\mu}{}_{\mathcal{U}} \\ {}^{\mu}{}_{\mathcal{V}_{\mathcal{G}_{\mathcal{A}}}} & {}^{\mu}{}_{\mathcal{V}_{\mathcal{G}_{\mathcal{A}}}} \end{bmatrix} \end{bmatrix}$

• By default, we assume the origin of the frame is used as the reference point: $Av = Av_{o_A}$ let p bc a body-fixed point of body B "physics": $V_p = V_{g_a} + \omega \times (\widehat{g_a p})$
+ $V_p = A_1 V_q = A_2 + A_3 V_q$
+ $V_p = A_3 V_q + A_4 V_q = A_4 V_q + A_5 V_q$

Example of Twist I

Example of Twist II

the figure, we can write r as r^s = (2, −1, 0) or r^b = (2, −1.4, 0), w as ω^s = (0, 0, 2)

Change Reference Frame for Twist (1/2)

• Given a twist V , let $^A V$ and $^B V$ be their coordinates in frames $\{A\}$ and $\{B\}$

$$
{}^A \mathcal{V} = \left[\begin{array}{c} {}^A \omega \\ {}^A \underline{v}_A \end{array} \right], \qquad {}^B \mathcal{V} = \left[\begin{array}{c} {}^B \omega \\ {}^B \overline{v}_B \end{array} \right] \; \mathbf{I}_{\mathcal{V}_{\mathbf{0}_{\mathbf{z}}}} \quad {}^B \mathcal{V}_{\mathbf{S}}
$$

• They are related by
$$
AV = AX_B
$$
 by

\n
$$
0 \xrightarrow{h_{W}} \frac{A_{R_B} \cdot b_{W}}{A_{R_B}}
$$
\n
$$
0 \xrightarrow{h_{W}} \frac{A_{R_B} \cdot b_{W}}{A_{R_B}}
$$
\n
$$
0 \xrightarrow{h_{W}} \frac{A_{R_B} \cdot b_{W}}{A_{R_B}}
$$
\n
$$
0 \xrightarrow{h_{W}} \frac{A_{R_B}}{A_{R_B}}
$$
\n
$$
0 \xrightarrow{h_{W}} \frac{A_{R
$$

Change Reference Frame for Twist (2/2)
\n
$$
\begin{array}{rcl}\n\text{(1)} & \text{(2)} & \text{(3)} & \text{(4)} & \text{(4)} \\
\text{(5)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(7)} & \text{(8)} & \text{(9)} & \text{(9)} \\
\text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} \\
\text{(2)} & \text{(3)} & \text{(4)} & \text{(5)} \\
\text{(4)} & \text{(5)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(7)} & \text{(8)} & \text{(9)} \\
\text{(1)} & \text{(2)} & \text{(3)} & \text{(4)} & \text{(5)} \\
\text{(4)} & \text{(5)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(7)} & \text{(8)} & \text{(9)} & \text{(1)} \\
\text{(1)} & \text{(2)} & \text{(3)} & \text{(4)} & \text{(5)} \\
\text{(4)} & \text{(5)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(7)} & \text{(8)} & \text{(9)} & \text{(9)} \\
\text{(1)} & \text{(2)} & \text{(3)} & \text{(4)} & \text{(5)} \\
\text{(4)} & \text{(5)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(7)} & \text{(8)} & \text{(9)} & \text{(9)} \\
\text{(1)} & \text{(2)} & \text{(3)} & \text{(4)} & \text{(5)} \\
\text{(4)} & \text{(5)} & \text{(6)} & \text{(6)} & \text{(6)} \\
\text{(6)} & \text{(7)} & \text{(8)} & \text{(9)} & \text{(9)} \\
\text{(1)} & \text{(2)} & \text{(3)} & \text{(4)} & \text{(5)} \\
\text{(4)}
$$

• If configuration ${B}$ in ${A}$ is $T = (R, p)$, then

$$
\boxed{A X_B = [\text{Ad}_T] \triangleq \begin{bmatrix} R & 0 \\ [p]R & R \end{bmatrix}}
$$
\n
$$
\text{Ad}^{\text{gink}} \frac{\text{d}^{\text{gink}} \text{d}^{\text{gmk}}}{\text{d}^{\text{gmk}}}.
$$

Example I Revisited

Outline

- [Rigid Body Configuration](#page-2-0)
- [Rigid Body Velocity \(Twist\)](#page-13-0)
- V direction • [Geometric Aspect of Twist: Screw Motion](#page-24-0) χ^{ave}
- Recal: [ineap velocity v EIR³ / v= \hat{v} ·livi] \leq scalar - anywhere velocity: $w = \hat{\omega} \hat{g}$ = sealar speed. - rijid body velocity: γ = (ω) = Direction · speed

Screw Motion: Definition

• Rotating about an axis while also translating along the axis

˙θ

- Represented by screw axis $\{q, \hat{s}, h\}$ and rotation speed $\dot{\theta}$
	- \hat{s} : unit vector in the direction of the rotation axis
	- q : any point on the rotation axis
	- h : screw pitch which defines the <u>ratio</u> of the linear velocity along the screw axis to the angular velocity about the screw axis
- ϵ screw axis (Figure 3.19). $\bullet\,$ Theorem (Chasles): Every rigid body motion can be realized by a screw $s_{\rm max}$ velocity σ and σ about S (represented by ${\rm s}_{{\rm max}}$) as ${\rm s}_{{\rm max}}$ \n \n Represented by screw axis $\{q, \hat{s}, h\}$ and rotation speed $\dot{\theta}$ - \hat{s}: unit vector in the direction of the rotation axis\n - <i>q</i>: any point on the rotation axis\n - <i>h</i>: screw pitch which defines the ratio of the linear velocity along the s to the angular velocity about the screw axis\n \n \n Theorem (Chasles): Every rigid body motion can be realized by a sc motion.\n \n \n Server Motion\n\n Advanced Control for Robotics\n\n Wei Zhang(SU)\n\n</ motion.

From Screw Motion to Twist: screw motion is a special rigid looky

- Consider a rigid body under a screw motion with screw axis $\{\hat{s}, h, q\}$ and (rotation) speed θ
- Fix a reference frame ${A}$ with origin o_A .
- Find the twist ${}^A \mathcal{V} = ({}^A \omega, {}^A v_{0A})$ "Goordinate" free" given arbitrary
body-fised point 9. Using 9 as ref_{re}e $A_{\omega} = \hbar \hat{\xi} \cdot \hat{\mathbf{p}}$ $\mathsf{A}_{\mathsf{A}_{\mathsf{A}}}=\mathsf{A}_{\mathsf{A}}^{\mathsf{A}}\mathsf{A}_{\mathsf{B}}\mathsf{B}_{\mathsf{A}}\mathsf{A}_{\mathsf{B}}\mathsf{A}_{\mathsf{B}}\mathsf{A}_{\mathsf{B}}\mathsf{A}_{\mathsf{B}}$ $v_{p} = v_1 + \omega \times (\overrightarrow{r_1})$ $A^{2}(h_{0})$ $A^{2}(v_{0})$ $A^{2}(v_{0})$ $\frac{1}{\sqrt{6}}\sqrt{6} = \sqrt{4} + \omega \times (\sqrt{6} \omega)$ $=(A_{S}^{T}h - A_{S}^{2}x^{4}q) \cdot b$ • Result: given screw axis $\{s, h, q\}$ with rotation speed θ , the corresponding
- twist $V = (\omega, v)$ is given by

$$
\underline{w = \hat{s}\dot{\theta}} \qquad v = -\hat{s}\dot{\theta} \times q + h\hat{s}\dot{\theta} \qquad \qquad \text{and} \qquad
$$

.- The result holds as long as all the vectors and the twist are represented in the same reference frame $\oint \gamma = \frac{C_{\text{C}}}{\delta} \frac{d\gamma}{d\theta}$, $\oint \frac{d\gamma}{d\beta}$, $\oint \frac{d\gamma}{d\theta}$, \oint same reference frame

From Twist to Screw Motion

- The converse is true as well: given any twist $(v = (\omega, v))$ we can always find the corresponding screw motion $\{q, \hat{s}, h\}$ and $\tilde{\theta}$
	- If $\omega = 0$, then it is a pure translation $(h = \infty)$

$$
\hat{s} = \frac{v}{\|v\|}, \quad \dot{\theta} = \|v\|, h = \infty, q \text{ can be arbitrary}
$$

- If
$$
\omega \neq 0
$$
:
\n
$$
\hat{s} = \frac{\omega}{\|\omega\|}, \quad \dot{\theta} = \|\omega\|, \quad q = \frac{\omega \times v}{\|\omega\|^2}, \quad h = \frac{\omega^T v}{\|\omega\|}
$$
\n
$$
\text{by } \text{con} \text{ play} \text{ into the equation } \text{to } \text{ verify the result}
$$

Examples: Screw Axis and Twist

Screw Representation of a Twist

 $\bullet\,$ Recall: an angular velocity vector ω can be viewed as $\hat\omega\theta$, where $\hat\omega$ is the unit rotation axis and $\hat{\theta}$ is the rate of rotation about that axis

$$
\omega=\widehat{\omega}\psi
$$

- Similarly, a twist (spatial velocity) V can be interpreted in terms of a screw axis \hat{S} and a velocity $\hat{\theta}$ about the screw axis
 $V = \hat{S} \cdot \hat{\theta}$
 $\hat{S} = S \gamma \omega T \cdot T \omega T \cdot (\hat{\epsilon}, \hat{\epsilon}, \hat{\theta}, \hat{\theta} = 1)$
- Consider a rigid body motion along a screw axis $\hat{\mathcal{S}} = \{\hat{s}, h, q\}$ with speed $\hat{\theta}$. With slight abuse of notation, we will often write its twist as

$$
\mathcal{V} = \hat{\mathcal{S}}\hat{\theta}
$$

$$
\hat{\zeta} \iff (\hat{\zeta}, h, \hat{\eta}), \hat{\theta} \approx 1
$$

- In this notation, we think of \hat{S} as the twist associated with a unit speed motion along the screw axis $\{\hat{s}, h, q\}$

More Discussions