SDM5008 Advanced Control for Robotics

Lecture 1: Rigid Body Configuration and Velocity

Prof. Wei Zhang

School of Design and Manufactoring Southern University of Science and Technology, Shenzhen, China

Outline

• Rigid Body Configuration

• Rigid Body Velocity (Twist)

• Geometric Aspect of Twist: Screw Motion

Free Vector

• Free Vector: geometric quantity with length and direction

$$1 \rightarrow y$$

• Given a reference frame, y can be moved to a position such that the base of the arrow is at the origin without changing the orientation. Then the vector v can be represented by its coordinates v in the reference frame.

• v denotes the physical quantity while ${}^{A}v$ denote its coordinate wrt frame {A}.

Point

• **Point**: *p* denotes a point in the physical space

·J

• A point $p\ {\rm can}\ {\rm be}\ {\rm represented}\ {\rm by}\ {\rm a}\ {\rm vector}\ {\rm from}\ {\rm frame}\ {\rm origin}\ {\rm to}\ p$

• When left-superscript is not present, it means the physical vector itself or the coordinate of the vector for which the reference frame is clear from the context.

Cross Product

• Cross product or vector product of $a \in \mathbb{R}^3, b \in \mathbb{R}^3$ is defined as

$$\underbrace{a \times b}_{a \times b} = \begin{bmatrix} a_2b_3 - a_3b_2\\ a_3b_1 - a_1b_3\\ a_1b_2 - a_2b_1 \end{bmatrix} = \begin{bmatrix} 0 & \mathcal{A}_1 & \mathcal{A}_2\\ \mathcal{A}_3 & 0 & -\mathcal{A}_4\\ -\mathcal{A}_2 & \mathcal{A}_1 & 0 \end{bmatrix} \begin{pmatrix} b_1\\ b_3 \end{pmatrix} (1)$$
$$= \begin{bmatrix} a \end{bmatrix}$$
$$a \times b$$
$$a$$

Properties:

- $||a \times b|| = ||a|| ||b|| \sin(\theta)$
- $\bullet \ a \times b = -b \times a$
- $a \times a = 0$

Skew symmetric representation

• It can be directly verified from definition that $a \times b = [a]b$, where

$$\begin{array}{l}
\left(A = A^{\mathsf{T}} \\ A = -A^{\mathsf{T}} \\ A = -A^{\mathsf{T}} \end{array} \right) \begin{bmatrix} a \end{bmatrix} \triangleq \begin{bmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{bmatrix} \\
\bullet a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \leftrightarrow [a] \qquad (2)$$

- $[a] = -[a]^T$ (called skew symmetric)
- $[a][b] [b][a] = [a \times b]$ (Jacobi's identity)

Rotation Matrix

- Frame: 3 coordinate vectors (unit length) $\hat{x}, \hat{y}, \hat{z}$, and an origin
 - $\hat{x}, \hat{y}, \hat{z}$ mutually orthogonal $\hat{\chi}^{\dagger} \hat{y} \simeq \hat{v}$, $\hat{\chi}^{\dagger} \hat{z} = \hat{v}$, $\hat{\chi}^{\dagger} \hat{z} = \hat{v}$

-
$$\hat{x} \times \hat{y} = \hat{z} \Leftarrow r$$
 ight hand rule

• Rotation Matrix: specifies orientation of one frame relative to another

Special Orthogonal Group SO(3), SO(2)

• Special Orthogonal Group: Space of Rotation Matrices in \mathbb{R}^n is defined as

$$\underbrace{SO(n)}_{i \in \mathbb{R}} = \{ R \in \mathbb{R}^{n \times n} : R^T R = I, \det(R) = 1 \}$$

- SO(n) is a group. We are primarily interested in SO(3) and SO(2), rotation groups of \mathbb{R}^3 and \mathbb{R}^2 , respectively.
- **Group** is a set *G*, together with an operation •, satisfying the following group axioms:

- Closure:
$$a \in G, b \in G \Rightarrow a \bullet b \in G$$

- Associativity: $(a \bullet b) \bullet c = a \bullet (b \bullet c), \forall a, b, c \in G$
- Identity element: $\exists e \in G$ such that $e \bullet a = a$, for all $a \in G$.
- Inverse element: For each $a \in G$, there is a $b \in G$ such that $a \bullet b = b \bullet a = e$, where e is the identity element.

Rigid Body Configuration

f 20,1,2,3} ""+" }

Use of Rotation Matrix (1/2)

- Representing an orientation ^AR_B: ilivectly -from definition.
 prientation of fresh ve lative to \$4\$
 Changing the reference frame ^AR_B:
- Changing the reference frame ${}^{A}R_{B}$: Given vector V, its coordinate in fA}, (13) one 4v, 13v AV = "RE BV . proof . "coordinate - froe" - we have only one vector V, $AV = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \ddots \end{bmatrix}$, $BV = \begin{bmatrix} B_1 \\ B_2 \\ \ddots \end{bmatrix}$ "physics" V= a1 xA + a2 yA + d3 ZA = B, AR + B2 98 + B3 ZB ·· Aphysics ·· =) express "playsics" in fA3

Use of Rotation Matrix (2/2)

$$d_{A}^{A} + d_{L} + d_{A}^{A} + d_{A}^{A$$

• Rotating a vector or a frame $Rot(\hat{\omega}, \theta)$: will be discussed in next lecture.

Rigid Body Configuration (pose)

Given two coordinate frames {A} and {B}, the configuration of B relative to A is determined by

ARB and AOB
A

• For a point p, its coordinates ${}^{\scriptscriptstyle A}p$ and ${}^{\scriptscriptstyle B}p$ are related by:

Homogeneous Transformation Matrix

• Homogeneous Transformation Matrix: ${}^{\scriptscriptstyle A}T_B$

$$\frac{AP}{3\times 1} = \frac{AP}{3\times 1} = \frac{AP}{3\times 3} = \frac{AP}{3\times 1} = \frac{AP}{1} = \begin{bmatrix} AP_{B} & AP_{B} \\ P & P \\ 1 \end{bmatrix} = \begin{bmatrix} AP_{B} & AP_{B} \\ P & P \\ P &$$

y=ax y=ax+b

Example of Homogeneous Transformation Matrix

Fixed frame {a}; end effector frame {b}, the camera frame {c}, and the workpiece frame {d}. Suppose $\|p_c - p_b\| = 4$

2. (amera " (ocation" ? "Tc = ("Re,"pc)

$$R_{c} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -1 \end{bmatrix}, \quad P_{c} = \begin{bmatrix} -1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$$

$$T_{c} = \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$R_{c} = \begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

ⁿTc Tb

$$T_{i} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

• Rigid Body Configuration

• Geometric Aspect of Twist: Screw Motion

Rigid Body Velocity (1/3)

• Consider a rigid body in motion. The body has infinitely many points $\{p_i\}$ with different velocities $\{v_{p_i}\}$ $\downarrow_{p_i} = g(q_i, parameter)$ $(mon t_i all points)$ p_i the body $(p_i) = q(q_i, parameter)$

 $V_{P_1} = g(P_1, parameter)$ $V_{P_2} = g(P_2, parameter)$ $V_{P_3} = :$

- They can be expressed by the same set of parameter
- Rigid body velocity (i.e. spatial velocity, twist) is one such parameterization

Rigid Body Velocity (2/3)

 Pure rotation case Assume To on the rotation axis $V_{p_{1}} = \omega \times p_{p_{1}} = g(p_{1}, \omega) , \quad V_{p_{2}} = o$ General motion 1°. Again, assume po on notation axis/body-fixed. $\forall p_i = \dot{p}_i(t) = (p_i(t) + p_i \vec{p}_i(t))' = \forall p_i + \omega \times (p_i \vec{p}_i)'$ = g(?;, 7 ~ m) In this case, go is a reference point we use to express velocities + all the of other voints other yoints 2. What is ref point NOT on rotation aixis eg. consider arbitrary body-fixed 2, with velocity va - we still have the SAME expression. Vp; = Vq+wx qp;

Rigid Body Velocity (3/3)
• Why? use p. as a intermediate variable
A is brdy-fixed
$$\Rightarrow$$
 by () \Rightarrow $v_{A} = v_{p,t} \pm x p_{s}^{2}$
3 what if the reference print
• r'' is NOT body-fixed
(e.g. r is stationary, or more
in another way)
- let q be the brdy-fixed print
• currently, coincide with r''
 ψ^{W}
i.e. $q(t) = r$ at time t $(q(t_{1}) \mod n \cdot t \ equal (r \ out \ t_{1} \neq t_{1})$
By () $v_{p;} = v_{q(t)} \pm t \exp (q(t_{1}) \mod n \cdot t \ equal (r \ out \ t_{1} \neq t_{1})$
By () $v_{p;} = v_{q(t_{1})} \pm t \exp (q(t_{1}) \mod n \cdot t \ equal (r \ out \ t_{1} \neq t_{1})$
By () $v_{p;} = v_{q(t_{1})} \pm v_{q(t_{2})} \pm t \exp (q(t_{1}) \mod n \cdot t \ equal (r \ out \ t_{1} \neq t_{1})$
By () $v_{p;} = v_{q(t_{2})} \pm t \exp (q(t_{2}) + t \max rp_{1})$

Rigid Body Velocity: Spatial Velocity (Twist)

- How to represent a rigid body velocity?
 - Pick an arbitrary point (r) (reference point), which may or may not be body-fixed
 - Define v_r as the velocity of the body-fixed point currently coincides with r

- For any body-fixed point
$$p$$
 on the body: $v_p = v'_r + \omega \times (\overrightarrow{rp}) \notin c_{\text{ordinate}}$

- Spatial Velocity (Twist): $\mathcal{V}_{\mathcal{D}} = (\omega, v_r)$
- Twist is a "physical" quantity (just like linear or angular velocity)
 - It can be represented in any frame for any chosen reference point $\widehat{\langle r \rangle}$
- A rigid body with $\mathcal{V}_r = (\omega, v_r)$ can be "thought of" as translating at v_r while rotating with angular velocity ω about an axis passing through r
 - This is just one way to interpret the motion.

Spatial Velocity Representation in a Reference Frame

• Given frame $\{A\}$ and a spatial velocity \mathcal{Y} of body \mathcal{B}

$$T_A = \delta (R_A, O_A)$$

• Choose o_A (the origin of {A}) as the reference point to represent the rigid body velocity

• Coordinates of \mathcal{V} in {A}:

$$\overset{A}{\longrightarrow} \overset{V_{o_A} = ({}^{A}\omega, {}^{A}v_{o_A})}{\longrightarrow}$$

 $A_{V_{0A}} = A_{V_{0A}}$

• By default, we assume the origin of the frame is used as the reference point: ${}^{A}\mathcal{V} = {}^{A}\mathcal{V}_{o_{A}}$ let p be a body-fixed point of body B "physics": $V_p = V_{2a} + \omega \times (Q_a p)$ $u_{sing} JA$ +o express physics $= {}^{A}V_a + {}^{A}\omega \times {}^{A}Q_a p$

Example of Twist I

· Example 1: what's the twist of the spinning top? w= Jorad/s Choose [A] - frame: $w = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ 24 $(A_{\mathcal{M}})_{\mathcal{H}_{\mathcal{D}}} = (A_{\mathcal{M}}, A_{\mathcal{M}}) = \begin{bmatrix} A_{\mathcal{M}} \\ \vdots \\ A_{\mathcal{M}} \end{bmatrix} = \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$ $\begin{vmatrix} A_{V_{0}} = \begin{bmatrix} 50^{\chi_{0}}, s\psi \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$ choose (rame (B) $B_{\text{ADP}} = \begin{bmatrix} B_{\text{W}} \\ B_{\text{V}_{0_{\text{B}}}} \end{bmatrix} = \begin{bmatrix} 5_{0} \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ $= 0 + \begin{bmatrix} 0 \\ 0 \\ 5 \end{bmatrix} \times \begin{bmatrix} 0 \\ -0.04 \\ p \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$ $^{\mu}X_{\mathbf{k}} = \left[Ad_{\mathbf{T}} \right] = \left[\begin{array}{c} 0 & 0 \\ 0 & 1 \\ 1 & 0 \end{array} \right]$ heursit using "Xe AV-6p = AXB BV+0p $\left[\begin{array}{c} R, \\ R \end{array} \right]$ *, Rigid Body Velocity (Twist

Example of Twist II

Change Reference Frame for Twist (1/2)

• Given a twist \mathcal{V} , let ${}^{A}\mathcal{V}$ and ${}^{B}\mathcal{V}$ be their coordinates in frames {A} and {B}

$${}^{A}\mathcal{V} = \left[\begin{array}{c} {}^{A}\omega \\ {}^{A}\underline{v}_{\underline{A}} \end{array}\right], \qquad {}^{B}\mathcal{V} = \left[\begin{array}{c} {}^{B}\omega \\ {}^{C}\underline{v}_{\underline{B}} \end{array}\right] \mathbf{I}_{\mathcal{V}_{\underline{B}_{\underline{a}}}} \quad \mathbf{I}_{\mathcal{V}_{\underline{B}_{\underline{a}}}}$$

• They are related by
$${}^{A}\mathcal{V} = {}^{A}X_{B}{}^{B}\mathcal{V}$$

() ${}^{A}\mathcal{W} = {}^{A}R_{B}{}^{B}\mathcal{W}$
(2) "condinate - fire"
 V_{B} : velocity of body -fixed pt currently coincides with 2_{A}
 $V_{0_{A}}$: velocity of body -fixed pt currently coincides with 2_{A}
 $V_{0_{A}}$: $V_{0_{B}}$: $V_{0_{A}}$ = $V_{0_{B}} + W \times \hat{V}_{0} \otimes \hat{V}_{A}$
 $V_{0_{A}} = V_{0_{B}} + W \times \hat{V}_{0} \otimes \hat{V}_{A}$
 $V_{0_{A}} = V_{0_{B}} + W \times \hat{V}_{0} \otimes \hat{V}_{A}$
 $V_{0_{A}} = \hat{V}_{0_{B}} + \hat{V}_{0_{B}} + \hat{V}_{0_{B}} + \hat{V}_{0_{B}} \times \hat{V}_{0_{B}} \times \hat{V}_{0_{B}} + \hat{V}_{0_{B}} \times \hat{V}_{0_{B}} \times \hat{V}_{0_{B}} + \hat{V}_{0_{B}} \times \hat{V}_{0$

• If configuration {B} in {A} is T=(R,p), then

$$\boxed{ \begin{bmatrix} {}^{A}X_{B} = [\mathrm{Ad}_{T}] \triangleq \begin{bmatrix} R & 0\\ [p]R & R \end{bmatrix} }$$

Example I Revisited

Outline

- Rigid Body Configuration
- Rigid Body Velocity (Twist)
- Geometric Aspect of Twist: Screw Motion (direction)
 Recall: [inear velocity velk³ , v= v. [ivi] <- scalar
 Angular velocity: welk³. w= weice scalar speed.
 rigid body velocity: V= (w) + Direction · speed

Screw Motion: Definition

• Rotating about an axis while also translating along the axis

- Represented by screw axis $\{q, \hat{s}, h\}$ and rotation speed $\dot{\theta}$
 - \hat{s} : unit vector in the direction of the rotation axis
 - q: any point on the rotation axis
 - h: screw pitch which defines the <u>ratio</u> of the linear velocity along the screw axis to the angular velocity about the screw axis
- Theorem (Chasles): Every rigid body motion can be realized by a screw motion.

From Screw Motion to Twist : screw motion is a special rigid body motion

- Consider a rigid body under a screw motion with screw axis $\{\hat{s}, h, q\}$ and (rotation) speed $\dot{\theta}$
- Fix a reference frame $\{A\}$ with origin o_A .
- Find the twist ${}^{A}\mathcal{V} = ({}^{A}\omega, {}^{A}v_{o_{A}})$ ${}^{\phi}\omega = {}^{A}\hat{S} \cdot \hat{\theta}$ ${}^{\phi}\omega_{\mu} = {}^{A}\hat{S}h\hat{\theta} + {}^{A}\omega \times ({}^{A}\hat{q})$ ${}^{A}\omega_{\mu} = {}^{A}\hat{S}h\hat{\theta} + {}^{A}\omega \times ({}^{A}\hat{q})$ ${}^{-A}\hat{S}(h\hat{\theta}) - {}^{B}\hat{S}\hat{\theta} \times {}^{A}\hat{q}$ ${}^{-(A\hat{S},h - A\hat{S},A\hat{q}) \cdot \hat{\theta}}$ • **Result**: given screw axis $\{\hat{s}, h, q\}$ with rotation speed $\hat{\theta}$, the corresponding
- **Result**: given screw axis $\{\hat{s}, h, q\}$ with rotation speed θ , the corresponding twist $\mathcal{V} = (\omega, v)$ is given by

$$\omega = \hat{s}\dot{\theta} \qquad v = -\hat{s}\dot{\theta} \times q + h\hat{s}\dot{\theta} \qquad s v^{\mu} \qquad s v^{\mu}$$

- The result holds as long as all the vectors and the twist are represented in the same reference frame $\int_{a}^{b} \int_{a}^{b} = \int_{Crew} T_{a} T_{wist} (\hat{s}, h, q, \dot{b}) = \int_{Crew} T_{a} T_{wist} (\hat{s$

From Twist to Screw Motion

• The converse is true as well: given any twist $(\mathcal{Y} = (\omega, v))$ we can always find the corresponding screw motion $\{q, \hat{s}, h\}$ and θ

- If $\omega = 0$, then it is a pure translation $(h = \infty)$

$$\hat{s} = \frac{v}{\|v\|}, \quad \dot{\theta} = \|v\|, h = \infty, q \text{ can be arbitrary}$$

- If
$$\omega \neq 0$$
:
 $\hat{s} = \frac{\omega}{\|\omega\|}, \quad \dot{\theta} = \|\omega\|, \quad q = \frac{\omega \times v}{\|\omega\|^2}, \quad h = \frac{\omega^T v}{\|\omega\|}$

you can plug into the equation to verify the result

Examples: Screw Axis and Twist

Screw Representation of a Twist

• Recall: an angular velocity vector ω can be viewed as $\hat{\omega}\dot{\theta}$, where $\hat{\omega}$ is the unit rotation axis and $\dot{\theta}$ is the rate of rotation about that axis

- Similarly, a twist (spatial velocity) \mathcal{V} can be interpreted in terms of a screw axis \hat{S} and a velocity $\dot{\theta}$ about the screw axis $\mathcal{V} = \hat{S} \cdot \dot{\theta}$ $\hat{S} = Srew To Twist (\hat{c} \varrho h, \dot{\theta} = 1)$
- Consider a rigid body motion along a screw axis $\hat{S} = \{\hat{s}, h, q\}$ with speed $\dot{\theta}$. With slight abuse of notation, we will often write its twist as

$$\frac{\mathcal{V}=\hat{S}\dot{\theta}}{\hat{S}} \longleftrightarrow (\hat{s},h,q), \dot{\theta}=1$$

- In this notation, we think of $\hat{\mathcal{S}}$ as the twist associated with a unit speed motion along the screw axis $\{\hat{s},h,q\}$

More Discussions