
Advanced Control for Robotics (Fall 2024)

Lecture Note 10

Markov Decision Process for Reinforcement Learning

1

Prof. Wei Zhang

Southern University of Science and Technology

2

▪ From Classical Control to RL

Robot

Task Cmd

Environment

𝒐(𝒕)

Control Policy

▪ Classical and Modern Control

▪ Require model (often analytical form)

▪ Require analysis, only feasible for simple model

▪ Hard to deal with uncertainty

3

▪ From Classical Control to RL

4

▪ Model Predictive Control

▪ From Classical Control to RL

5

▪ Reinforcement Learning

▪ From Classical Control to RL

6

Classical control

▪ From Classical Control to RL

Modern Control MPC Reinforcement

Learning

▪ Our Plan for Reinforcement Learning

• Markov decision problem

• Value evaluation via sampling

• Policy gradient theoretical foundation and derivation

• Advanced PG:

- Baseline

- Actor-critique

- PPO

• Legged robot examples

▪ This lecture: general decision/control problem formulation of stochastic

system

• Markov chain

• Markov decision process

• Bellman equations

• Simulations

7

Markov Chain: MC = 𝑺, 𝚪

• 𝑆 – state space (discrete or continuous)

• Initial distribution 𝑝0 𝑠 = Pr(𝑆0 = 𝑠)

• Γ - transition operator, i.e. Γ 𝑥 𝑦 = Pr 𝑠𝑡+1 = 𝑥 𝑠𝑡 = 𝑦)

• For discrete state space, the transition operator has a matrix

representation:

8

▪ Markov Chain Example

9

▪ 𝑴𝑪 𝑺, 𝚪 with 𝑃0 specifies a way to generate sequential random

samples 𝑠0, 𝑠1, …

• 𝑠0, 𝑠1, … is a called a realization/trajectory of the MC

• Markov property: Pr 𝑠𝑡 𝑠0, 𝑠1, … , 𝑠𝑡−1 = Pr(𝑠𝑡|𝑠𝑡−1)

▪ (Autonomous) Stochastic dynamical system:

- 𝑠𝑘+1 = 𝑓 𝑠𝑘 , 𝑤𝑘 or 𝑠𝑘+1 = 𝑓 𝑠𝑘 + 𝑤𝑘

- where 𝑤𝑘 is a random variable (process noise)

• The above stochastic dynamical system is a Markov chain

▪ MC is a more general (less explicit) way to write a stochastic

dynamic system

10

▪ Markov Decision Process:

• MDP = (𝑆, 𝒜, Γ, r)

• 𝑆 – state space (discrete or continuous)

• 𝒜- action/control space (discrete or continuous)

• Γ - Transition kernel/operator

- Γ 𝑠′ 𝑠, 𝑎 = 𝑃𝑟 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 𝑝(𝑠′|𝑠, 𝑎)

• 𝑟 - reward function: 𝑟(𝑠, 𝑎, 𝑠′) or typically 𝑟(𝑠, 𝑎)

11

▪ Policy

• Markov decision: agent makes decision based on the current state

• 𝜋 𝑎 𝑠 : is the pdf/pmf of action 𝑎 given the current state 𝑠, i.e.,

𝜋 𝑎 𝑠 = Pr 𝐴 = 𝑎 𝑆 = 𝑠

• Deterministic policy 𝑎 = 𝜋 𝑠

- is a deterministic function of state

• The policy can also be time varying in general, 𝜋𝑡 𝑎 𝑠 or 𝜋(𝑎|𝑠, 𝑡)

• 𝜋𝜃 𝑎 𝑠 - represent a policy within a class of functions with certain

parameter 𝜃

12

▪ Trajectories of MDP

• Given a policy 𝜋, a finite horizon 𝑇

• MDP becomes a MC with “closed-loop” transition operator Γ𝑐𝑙

• Trajectory 𝜏 = 𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑇 , 𝑎𝑇 is a trajectory of MDP under a

policy 𝜋

• Probability of a trajectory: 𝑃 𝜏|𝜋 = 𝑃 𝑠0, 𝑎0, … , 𝑠𝑇 , 𝑎𝑇|𝜋 =
Pr 𝑆0 = 𝑠0, 𝐴0 = 𝑎0, … , 𝑆𝑇 = 𝑠𝑇 , 𝐴𝑇 = 𝑎𝑇|𝜋

- We will write as 𝑃 𝜏 whenever the underlying policy 𝜋 is clear from the

context

13

▪ Some notations and facts:

14

▪ Some notations and facts:

15

▪ Return: Cumulative rewards over a trajectory, which may take several
different forms.

• Finite-horizon (undiscounted) return:

• Infinite-horizon discounted return:

• MDP (RL) Problem: max
𝜋

𝐸𝜏∼𝜋 𝑅 𝜏

• In deep RL, researchers often mix the two types of returns within one problem,
despite the two are significantly different. (e.g. one may set up algorithms to
optimize the undiscounted return, but use discount factors in estimating value
functions).

16

▪ Value functions:

• On-policy (state)-value function:

• On-policy action-value function (Q-function):

• Optimal value function:

• Optimal action-value function:

17

▪ Bellman Equations:

• Let’s focus on the infinite-horizon discounted return case

18

▪ Bellman equations:

19

▪ Bellman equations

20

▪ Value function and Bellman equations summary:

▪ 𝑉𝜋 𝑠 = 𝐸𝑎∼𝜋 𝑄𝜋 𝑠, 𝑎

▪ 𝑉∗ 𝑠 = max
𝑎

𝑄∗(𝑠, 𝑎)

▪ 𝑉𝜋 𝑠 = 𝐸𝑎∼𝜋 𝑟 𝑠, 𝑎 + 𝛼 𝐸𝑠′∼𝑝(|𝑠,𝑎) 𝑉𝜋 𝑠′

▪ 𝑄𝜋 𝑠, 𝑎 = 𝐸𝑠′∼𝑝 𝑟 𝑠, 𝑎 + 𝛼 𝐸𝑎′∼𝜋 𝑄𝜋 𝑠′, 𝑎′

▪ 𝑉∗ 𝑠 = max
𝑎

𝐸𝑠′∼𝑝 𝑟 𝑠, 𝑎 + 𝛼𝑉∗ 𝑠′

▪ 𝑄∗ 𝑠, 𝑎 = 𝐸𝑠′∼𝑝 𝑟 𝑠, 𝑎 + 𝛼 max
𝑎′

𝑄𝜋 𝑠′, 𝑎′

21

▪ Regarding Optimal policies:

• Directly from the Bellman equation, we have

𝜋∗ 𝑠 = argmaxa 𝑟 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑝 𝑠′ 𝑎, 𝑠 𝑉∗(𝑠′)

▪ Optimal deterministic policy:

• In finite, fully observable MDPs with typical reward maximization

criteria, there is always at least one optimal deterministic policy.

▪ Stochastic policies can be optimal or necessary:

1. POMDP: Belief States: The agent maintains a probability

distribution over possible states (belief state), stochastic policy may

be necessary because the same observation may correspond to

different actual states, requiring a randomized strategy to maximize

expected rewards

22

2. Risk Sensitivity and Exploration Objectives: May necessitate
stochastic actions as hedge against high variability and uncertain
outcomes.

3. Game-Theoretic Settings: Adversarial environments can require
mixed (stochastic) strategies.

▪ In RL Practice:

• Learning Phase:

- Stochastic Policies: Useful for exploration and learning the optimal policy.

- Adaptability: Allows the agent to improve its understanding of the
environment.

• Execution Phase:

- Deterministic Optimal Policy: Once the environment is well-understood, the
agent may employ a deterministic policy for optimal performance.

23

Sampling

• Random sampling can be used to simulate a MC or MDP

• Random sampling is also used to evaluate high-dim expectations (or

integrations) involved in reinforcement learning of MDP

▪ How to draw a random sample from a given pdf or pmf?

• Many different ways to draw random samples: such as inverse

transform sampling

24

▪ Customized sampling can be very slow. Try to use python built-in

sampling functions

▪ Sampling in Python

• numpy.random

- rand(d0, d1, ..., dn) Random uniform values in a given shape.

- randn(d0, d1, ..., dn) Return a sample (or samples) from the “standard

normal” distribution.

- choice(a[, size, replace, p]) Generates a random sample from a given 1-D

array

• Custom distributions: scipy.stats

- rv_continuous

- rv_discrete

- rv_histogram

• Many more…

25

Monte Carlo Method

▪ a class of simulation-based methods that seek to avoid complicated/

intractable mathematical computations (e.g. integration)

▪ Consider 𝑋1, 𝑋2, … , 𝑋𝑛 i.i.d. random vectors

▪ 𝐸 𝑋𝑖 = 𝜇𝑋 , 𝐶𝑜𝑣 𝑋𝑖 = 𝑄𝑋

▪ Sample mean: ത𝑋𝒏 =
𝟏

𝒏
∑𝑿𝒊 =

𝑿𝟏+𝑿𝟐⋯+𝑿𝒏

𝒏

▪ Sample covariance: ത𝑄𝑛 =
1

𝑛−1
∑𝑖 𝑋𝑖 − ത𝑋𝑛 𝑋𝑖 − ത𝑋𝑛

• The use of 𝑛 − 1 instead of 𝑛 is called Bessel’s correction

26

▪ They are unbiased estimate, i.e.

 𝐸 ത𝑋𝑛 = 𝜇𝑋, and 𝐸(ത𝑄𝑛) = 𝑄𝑋

▪Effect of Bessel’s correction becomes less significant as

𝑛 → ∞ , we can also use the uncorrected empirical

covariance ෩Q𝑛 =
1

𝑛
∑𝑖 𝑋𝑖 − ത𝑋𝑛 𝑋𝑖 − ത𝑋𝑛

▪Recall (strong) law of large number:

ത𝑋𝑛 → 𝜇𝑋 = 𝐸(𝑋), a.s.

27

▪ Central limit theorem (CLT):

𝑛 ത𝑋𝑛 − 𝜇𝑋 → 𝒩 0, 𝑄𝑋 in distribution

• In other words, ത𝑋𝑛 can be well approximated by Gaussian distribution

𝒩 𝜇𝑋,
𝑄𝑥

𝑛

• Covariance: 𝐸 ത𝑋𝑛 − 𝜇𝑋
ത𝑋𝑛 − 𝜇𝑋

𝑇 ≈
𝑄𝑋

𝑛

• MSE of the estimate ത𝑋𝑛 is 𝑡𝑟𝑎𝑐𝑒
𝑄𝑋

𝑛

28

▪ Monte Carlo Integration:

• 𝐸 𝜙 𝑋 can be estimated by

1

𝑛
෍

𝑖

𝜙 𝑋𝑖 ≈ 𝐸 𝜙 𝑋

where 𝑋𝑖 ∼ 𝑓𝑋 𝑥 are iid samples

29

▪ Importance sampling

• 𝐸𝑓 𝑋 = ∑𝑥 𝑥𝑓 𝑥 → sample mean estimate:

• Suppose we want to estimate 𝐸𝑔 𝑋 = ∑𝑥 𝑥𝑔 𝑥 , but we can only

sample from 𝑓 𝑥 distribution

30

▪ More Discussions

31

	Slide 1: Advanced Control for Robotics (Fall 2024) Lecture Note 10 Markov Decision Process for Reinforcement Learning
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

