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▪ From Classical Control to RL

Robot

Task Cmd

Environment

𝒐(𝒕)

Control Policy

▪ Classical and Modern Control

▪ Require model (often analytical form)

▪ Require analysis, only feasible for simple model

▪ Hard to deal with uncertainty
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▪ From Classical Control to RL 
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▪ Model Predictive Control

▪ From Classical Control to RL 
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▪ Reinforcement Learning

▪ From Classical Control to RL 
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Classical control

▪ From Classical Control to RL 

Modern Control MPC Reinforcement 

Learning



▪ Our Plan for Reinforcement Learning 

• Markov decision problem 

• Value evaluation via sampling 

• Policy gradient theoretical foundation and derivation

• Advanced PG:

- Baseline

- Actor-critique

- PPO

• Legged robot examples

▪ This lecture: general decision/control problem formulation of stochastic 

system 

• Markov chain

• Markov decision process

• Bellman equations

• Simulations 
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Markov Chain: MC = 𝑺, 𝚪

• 𝑆 – state space (discrete or continuous)

• Initial distribution 𝑝0 𝑠 = Pr(𝑆0 = 𝑠)

• Γ -  transition operator, i.e. Γ 𝑥 𝑦 = Pr 𝑠𝑡+1 = 𝑥 𝑠𝑡 = 𝑦)

• For discrete state space, the transition operator has a matrix 

representation:
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▪ Markov Chain Example
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▪ 𝑴𝑪 𝑺, 𝚪  with 𝑃0 specifies a way to generate sequential random 

samples 𝑠0, 𝑠1, …

• 𝑠0, 𝑠1, … is a called a realization/trajectory of the MC

• Markov property: Pr 𝑠𝑡 𝑠0, 𝑠1, … , 𝑠𝑡−1 = Pr(𝑠𝑡|𝑠𝑡−1)

▪ (Autonomous) Stochastic dynamical system:

- 𝑠𝑘+1 = 𝑓 𝑠𝑘 , 𝑤𝑘  or  𝑠𝑘+1 = 𝑓 𝑠𝑘 + 𝑤𝑘

- where 𝑤𝑘 is a random variable (process noise)

• The above stochastic dynamical system is a Markov chain 

▪ MC is a more general (less explicit) way to write a stochastic 

dynamic system
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▪ Markov Decision Process:

• MDP = (𝑆, 𝒜, Γ, r)

• 𝑆 – state space (discrete or continuous)

• 𝒜- action/control space (discrete or continuous)

• Γ - Transition kernel/operator

- Γ 𝑠′ 𝑠, 𝑎 = 𝑃𝑟 𝑆𝑡+1 = 𝑠′ 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 𝑝(𝑠′|𝑠, 𝑎)

• 𝑟 - reward function: 𝑟(𝑠, 𝑎, 𝑠′) or typically 𝑟(𝑠, 𝑎)
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▪ Policy

• Markov decision: agent makes decision based on the current state 

• 𝜋 𝑎 𝑠 : is the pdf/pmf of action 𝑎 given the current state 𝑠, i.e., 

𝜋 𝑎 𝑠  = Pr 𝐴 = 𝑎 𝑆 = 𝑠

• Deterministic policy 𝑎 =  𝜋 𝑠  

- is a deterministic function of state

• The policy can also be time varying in general, 𝜋𝑡 𝑎 𝑠  or 𝜋(𝑎|𝑠, 𝑡)

• 𝜋𝜃 𝑎 𝑠  - represent a policy within a class of functions with certain 

parameter 𝜃
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▪ Trajectories of MDP

• Given a policy 𝜋, a finite horizon 𝑇

• MDP becomes a MC with “closed-loop” transition operator Γ𝑐𝑙

• Trajectory 𝜏 = 𝑠0, 𝑎0, 𝑠1, 𝑎1, … , 𝑠𝑇 , 𝑎𝑇  is a trajectory of MDP under a 

policy 𝜋 

• Probability of a trajectory: 𝑃 𝜏|𝜋 = 𝑃 𝑠0, 𝑎0, … , 𝑠𝑇 , 𝑎𝑇|𝜋 =
Pr 𝑆0 = 𝑠0, 𝐴0 = 𝑎0, … , 𝑆𝑇 = 𝑠𝑇 , 𝐴𝑇 = 𝑎𝑇|𝜋

- We will write as 𝑃 𝜏  whenever the underlying policy 𝜋 is clear from the 

context
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▪ Some notations and facts:

14



▪ Some notations and facts:
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▪ Return: Cumulative rewards over a trajectory, which may take several 
different forms. 

• Finite-horizon (undiscounted) return:  

• Infinite-horizon discounted return: 

• MDP (RL) Problem: max
𝜋

𝐸𝜏∼𝜋 𝑅 𝜏

• In deep RL, researchers often mix the two types of returns within one problem, 
despite the two are significantly different. (e.g. one may set up algorithms to 
optimize the undiscounted return,  but use discount factors in estimating value 
functions). 
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▪ Value functions: 

• On-policy (state)-value function: 

• On-policy action-value function (Q-function):

• Optimal value function:

• Optimal action-value function: 
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▪ Bellman Equations:

• Let’s focus on the infinite-horizon discounted return case
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▪ Bellman equations: 
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▪ Bellman equations
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▪ Value function and Bellman equations summary:

▪ 𝑉𝜋 𝑠 = 𝐸𝑎∼𝜋 𝑄𝜋 𝑠, 𝑎

▪ 𝑉∗ 𝑠 = max
𝑎

𝑄∗(𝑠, 𝑎)

▪ 𝑉𝜋 𝑠 = 𝐸𝑎∼𝜋 𝑟 𝑠, 𝑎 + 𝛼 𝐸𝑠′∼𝑝(|𝑠,𝑎) 𝑉𝜋 𝑠′

▪ 𝑄𝜋 𝑠, 𝑎 = 𝐸𝑠′∼𝑝 𝑟 𝑠, 𝑎 + 𝛼 𝐸𝑎′∼𝜋 𝑄𝜋 𝑠′, 𝑎′

▪ 𝑉∗ 𝑠 = max
𝑎

𝐸𝑠′∼𝑝 𝑟 𝑠, 𝑎 + 𝛼𝑉∗ 𝑠′

▪ 𝑄∗ 𝑠, 𝑎 = 𝐸𝑠′∼𝑝 𝑟 𝑠, 𝑎 + 𝛼 max
𝑎′

𝑄𝜋 𝑠′, 𝑎′
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▪ Regarding Optimal policies: 

• Directly from the Bellman equation, we have 

𝜋∗ 𝑠 = argmaxa 𝑟 𝑠, 𝑎 + 𝛾 ෍

𝑠′

𝑝 𝑠′ 𝑎, 𝑠 𝑉∗(𝑠′)

▪ Optimal deterministic policy: 

• In finite, fully observable MDPs with typical reward maximization 

criteria, there is always at least one optimal deterministic policy.

▪ Stochastic policies can be optimal or necessary: 

1. POMDP: Belief States: The agent maintains a probability 

distribution over possible states (belief state), stochastic policy may 

be necessary because the same observation may correspond to 

different actual states, requiring a randomized strategy to maximize 

expected rewards
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2. Risk Sensitivity and Exploration Objectives: May necessitate 
stochastic actions as hedge against high variability and uncertain 
outcomes. 

3. Game-Theoretic Settings: Adversarial environments can require 
mixed (stochastic) strategies.

▪ In RL Practice: 

• Learning Phase: 

- Stochastic Policies: Useful for exploration and learning the optimal policy.

- Adaptability: Allows the agent to improve its understanding of the 
environment.

• Execution Phase:

- Deterministic Optimal Policy: Once the environment is well-understood, the 
agent may employ a deterministic policy for optimal performance.
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Sampling

• Random sampling can be used to simulate a MC or MDP 

• Random sampling is also used to evaluate high-dim expectations (or 

integrations) involved in reinforcement learning of MDP

▪ How to draw a random sample from a given pdf or pmf?

• Many different ways to draw random samples: such as inverse 

transform sampling
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▪ Customized sampling can be very slow. Try to use python built-in 

sampling functions

▪ Sampling in Python

• numpy.random

- rand(d0, d1, ..., dn) Random uniform values in a given shape.

- randn(d0, d1, ..., dn)  Return a sample (or samples) from the “standard 

normal” distribution.

- choice(a[, size, replace, p]) Generates a random sample from a given 1-D 

array 

• Custom distributions: scipy.stats

- rv_continuous

- rv_discrete

- rv_histogram

• Many more…
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Monte Carlo Method

▪ a class of simulation-based methods that seek to avoid complicated/ 

intractable mathematical computations (e.g. integration)

▪ Consider 𝑋1, 𝑋2, … , 𝑋𝑛 i.i.d. random vectors 

▪ 𝐸 𝑋𝑖 = 𝜇𝑋 , 𝐶𝑜𝑣 𝑋𝑖 = 𝑄𝑋

▪ Sample mean:  ത𝑋𝒏 =
𝟏

𝒏
∑𝑿𝒊 =

𝑿𝟏+𝑿𝟐⋯+𝑿𝒏

𝒏

▪ Sample covariance: ത𝑄𝑛 =
1

𝑛−1
∑𝑖 𝑋𝑖 − ത𝑋𝑛 𝑋𝑖 − ത𝑋𝑛

• The use of 𝑛 − 1 instead of 𝑛 is called Bessel’s correction
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▪ They are unbiased estimate, i.e. 

  𝐸 ത𝑋𝑛 = 𝜇𝑋,  and 𝐸( ത𝑄𝑛) = 𝑄𝑋

▪Effect of Bessel’s correction becomes less significant as 

𝑛 → ∞ , we can also use the uncorrected empirical 

covariance ෩Q𝑛 =
1

𝑛
∑𝑖 𝑋𝑖 − ത𝑋𝑛 𝑋𝑖 − ത𝑋𝑛

▪Recall (strong) law of large number:

ത𝑋𝑛 → 𝜇𝑋 = 𝐸(𝑋),  a.s.
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▪ Central limit theorem (CLT): 

𝑛 ത𝑋𝑛 − 𝜇𝑋  → 𝒩 0, 𝑄𝑋 in distribution

• In other words, ത𝑋𝑛 can be well approximated by Gaussian distribution 

𝒩 𝜇𝑋,
𝑄𝑥

𝑛

• Covariance: 𝐸 ത𝑋𝑛 − 𝜇𝑋
ത𝑋𝑛 − 𝜇𝑋

𝑇 ≈
𝑄𝑋

𝑛

• MSE of the estimate ത𝑋𝑛 is 𝑡𝑟𝑎𝑐𝑒
𝑄𝑋

𝑛
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▪ Monte Carlo Integration:

• 𝐸 𝜙 𝑋 can be estimated by

1

𝑛
෍

𝑖

𝜙 𝑋𝑖 ≈ 𝐸 𝜙 𝑋

where 𝑋𝑖 ∼ 𝑓𝑋 𝑥 are iid samples
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▪ Importance sampling

• 𝐸𝑓 𝑋 = ∑𝑥 𝑥𝑓 𝑥   →  sample mean estimate: 

• Suppose we want to estimate 𝐸𝑔 𝑋 = ∑𝑥 𝑥𝑔 𝑥  , but we can only 

sample from 𝑓 𝑥 distribution 
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▪ More Discussions
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