SDM5008 Advanced Control for Robotics Lecture 7: Rigid Body Dynamics

Prof. Wei Zhang

CLEAR Lab

Southern University of Science and Technology, Shenzhen, China https://www.wzhanglab.site/

Outline

• Spatial Acceleration

• Spatial Force (Wrench)

• Spatial Momentum

Outline

• Spatial Acceleration

- Spatial Force (Wrench)
- Spatial Momentum

Spatial Force (Wrench)

- Consider a rigid body with many forces on it and fix an arbitrary point O in space
- The net effect of these forces can be expressed as
 - A force f, acting along a line passing through ${\cal O}$
 - A moment n_O about point O
- Spatial Force (Wrench): is given by the 6D vector

$$\mathcal{F} = \left[\begin{array}{c} n_O \\ f \end{array} \right]$$

Spatial Force in Plücker Coordinate Systems

• Given a frame {A}, the Plücker coordinate of a spatial force \mathcal{F} is given by

$${}^{A}\mathcal{F} = \left[\begin{array}{c} {}^{A}n_{o_{A}} \\ {}^{A}f \end{array} \right]$$

• Coordinate transform: ${}^{A}\!\mathcal{F} = {}^{A}\!X_{B}^{*}{}^{B}\!\mathcal{F}$ where ${}^{A}\!X_{B}^{*} = {}^{B}\!X_{A}{}^{T}$

Wrench-Twist Pair and Power

- Recall that for a point mass with linear velocity v and linear force f. Then we
 know that the power (instantaneous work done by f) is given by f

 · v = f^Tv
- This relation can be generalized to spatial force (i.e. wrench) and spatial velocity (i.e. twist)
- Suppose a rigid body has a twist ${}^{A}\mathcal{V} = ({}^{A}\omega, {}^{A}v_{o_{A}})$ and a wrench ${}^{A}\mathcal{F} = ({}^{A}n_{o_{A}}, {}^{A}f)$ acts on the body. Then the power is simply

$$P = \left({}^{\scriptscriptstyle A} \mathcal{V} \right)^T \, {}^{\scriptscriptstyle A} \mathcal{F}$$

Joint Torque

- Consider a link attached to a 1-dof joint (e.g. revolute or prismatic). Let \hat{S} be the screw axis of the joint. The velocity of the link induced by joint motion is given by: $\mathcal{V} = \hat{S}\dot{\theta}$
- ${\mathcal F}$ be the wrench provided by the joint. Then the power produced by the joint is

$$P = \mathcal{V}^T \mathcal{F} = (\hat{\mathcal{S}}^T \mathcal{F}) \dot{\theta} \triangleq \tau \dot{\theta}$$

- $\tau = \hat{S}^T \mathcal{F} = \mathcal{F}^T \hat{S}$ is the projection of the wrench onto the screw axis, i.e. the effective part of the wrench.
- Often times, τ is referred to as joint "torque" or generalized force

Outline

• Spatial Acceleration

• Spatial Force (Wrench)

• Spatial Momentum

Rotational Inertia (1/2)

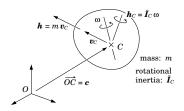
• Recall momentum for point mass:

Rotational Inertia (2/2)

- Rotational Inertia: $\bar{I} = \int_V \rho(r)[r][r]^T dr$
 - $\rho(\cdot)$ is the density function of the body
 - \bar{I} depends on coordinate system
 - It is a constant matrix if the origin coincides with CoM

Spatial Momentum

- Consider a rigid body with spatial velocity $\mathcal{V}_C=(\omega,v_C)$ expressed at the center of mass C
 - Linear momentum:
 - Angular momentum about CoM:
 - Angular momentum about a point O:
- Spatial Momentum:



Change Reference Frame for Momentum

• Spatial momentum transforms in the same way as spatial forces:

$$^{A}h = ^{A}X_{C}^{*C}h$$

Spatial Inertia

- Inertia of a rigid body defines linear relationship between velocity and momentum.
- Spacial inertia ${\mathcal I}$ is the one such that

$$h = \mathcal{IV}$$

• Let $\{C\}$ be a frame whose origin coincide with CoM. Then

$${}^{C}\mathcal{I} = \left[\begin{array}{cc} {}^{C}\bar{I}_{c} & 0 \\ 0 & mI_{3} \end{array} \right]$$

Spatial Inertia

• Spatial inertia wrt another frame {A}:

 ${}^{A}\mathcal{I} = {}^{A}X{}^{*}{}^{C}\mathcal{I}{}^{C}X_{A}$

• Special case: ${}^{A}\!R_{C} = I_{3}$

More Discussions

٠

More Discussions

٠