MEE5114 Advanced Control for Robotics Lecture 6: Velocity Kinematics: Geometric and Analytic Jacobian of Open Chain

Prof. Wei Zhang

CLEAR Lab

Southern University of Science and Technology, Shenzhen, China <https://www.wzhanglab.site/>

Outline

- [Background](#page-2-0)
- [Geometric Jacobian Derivations](#page-3-0)

• [Analytic Jacobian](#page-10-0)

Velocity Kinematics 148 4.1. Product of Exponentials Formula

- Velocity Kinematics: How does the velocity of $\{b\}$ relate to the joint velocities $\dot{\theta}_1, \ldots, \dot{\theta}_n$
- \bullet This depends on how to represent $\{b\}'$ s velocity
	- ⁰ = I. Evaluating, we get - Twist representation \rightarrow Geometric Jacobian
		- Local coordinate of SE $(3) \rightarrow$ Analytic Jacobian

Outline

- [Background](#page-2-0)
- [Geometric Jacobian Derivations](#page-3-0)

• [Analytic Jacobian](#page-10-0)

Simple Illustration Example: Geometric Jacobian (1/2)

Simple Illustration Example: Geometric Jacobian (2/2)

Geometric Jacobian: General Case (1/3)

• Let $V = (\omega, v)$ be the end-effector twist (coordinate-free notation), we aim to find $J(\theta)$ such that

$$
\mathcal{V} = J(\theta)\dot{\theta} = J_1(\theta)\dot{\theta}_1 + \cdots + J_n(\theta)\dot{\theta}_n
$$

• The ith column $J_i(\theta)$ is the end-effector velocity when the robot is rotating about S_i at unit speed $\dot{\theta}_i = 1$ while all other joints do not move (i.e. $\dot{\theta}_i = 0$ for $j \neq i$).

• Therefore, in **coordinate free** notation, J_i is just the screw axis of joint i :

$$
J_i(\theta) = \mathcal{S}_i(\theta)
$$

Geometric Jacobian: General Case (2/3)

- The actual coordinate of S_i depends on θ as well as the reference frame.
- The simplest way to write Jacobian is to use local coordinate:

$$
{}^{i}J_{i} = S_{i}, \quad i = 1, \ldots, n
$$

• In fixed frame $\{0\}$, we have

$$
{}^{0}J_{i}(\theta) = {}^{0}X_{i}(\theta) \, {}^{i}S_{i}, \quad i = 1, \ldots, n \tag{1}
$$

- \bullet Recall: \mathfrak{X}_i is the change of coordinate matrix for spatial velocities.
- Assume $\theta = (\theta_1, \ldots, \theta_n)$, then

$$
{}^{0}T_{i}(\theta) = e^{[0\bar{S}_{1}]\theta_{1}}\cdots e^{[0\bar{S}_{i}]\theta_{i}}M \quad \Rightarrow \quad {}^{0}X_{i}(\theta) = [\text{Ad}_{^{0}T_{i}(\theta)}] \tag{2}
$$

Geometric Jacobian: General Case (3/3)

- The Jacobian formula [\(1\)](#page-7-0) with [\(2\)](#page-7-1) is conceptually simple, but can be cumbersome for calculation. We now derive a recursive Jacobian formula
- Note: $^{0}J_{i}(\theta) =^{0}S_{i}(\theta)$ - For $i=1$, $\Im_1(\theta)=^0\!\!S_1(0)=^0\!\bar{\mathcal{S}}_1$ (independent of θ)

- For
$$
i = 2
$$
, $\mathcal{S}_2(\theta) = {}^0S_1(\theta_1) = \left[\text{Ad}_{\hat{T}(\theta_1)}\right] \cdot \overline{\mathcal{S}}_2$, where $\hat{T}(\theta_1) \triangleq e^{[0\overline{\mathcal{S}}_1]\theta_1}$

- For general i , we have

$$
{}^{0}J_{i}(\theta) = {}^{0}S_{i}(\theta) = \left[\mathrm{Ad}_{\hat{T}(\theta_{1},...,\theta_{i-1})} \right] {}^{0}\bar{S}_{i}
$$

where
$$
\hat{T}(\theta_{1},...,\theta_{i-1}) \triangleq e^{[{}^{0}\bar{S}_{1}]\theta_{1}} \cdots e^{[{}^{0}\bar{S}_{i-1}]\theta_{i-1}}
$$
(3)

Geometric Jacobian Example

Outline

- [Background](#page-2-0)
- [Geometric Jacobian Derivations](#page-3-0)

• [Analytic Jacobian](#page-10-0)

Analytic Jacobian

- Let $x \in \mathbb{R}^p$ be the task space variable of interest with desired reference x_d
	- E.g.: x can be Cartesian + Euler angle of end-effector frame
	- $p < 6$ is allowed, which means a partial parameterization of $SE(3)$, e.g. we only care about the position or the orientation of the end-effector frame
- \bullet Analytic Jacobian: $\dot{x} = J_a(\theta)\dot{\theta}$
- Recall Geometric Jacobian: $\mathcal{V} =$ $\lceil \omega$ \overline{v} 1 $= J(\theta)\dot{\theta}$
- They are related by:

$$
J_a(\theta)=E(x)J(\theta)=E(\theta)J(\theta)
$$

- $E(x)$ can be easily found with given parameterization x

Simple Illustration Example: Analytic Jacobian $(1/3)$

Simple Illustration Example: Analytic Jacobian (2/3)

Simple Illustration Example: Analytic Jacobian (3/3)

More Discussions