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Velocity Kinematics
148 4.1. Product of Exponentials Formula
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Figure 4.6: (Left) Universal Robots’ UR5 6R robot arm. (Right) Shown at its zero
position. Positive rotations about the axes indicated are given by the usual right-hand
rule. W1 is the distance along the ŷs-direction between the anti-parallel axes of joints
1 and 5. W1 = 109 mm, W2 = 82 mm, L1 = 425 mm, L2 = 392 mm, H1 = 89 mm,
H2 = 95 mm.

since e0 = I. Evaluating, we get

e−[S2]π/2 =




0 0 −1 0.089
0 1 0 0
1 0 0 0.089
0 0 0 1


 , e[S5]π/2 =




0 1 0 0.708
−1 0 0 0.926
0 0 1 0
0 0 0 1


 ,

where the linear units are meters, and

T (θ) = e−[S2]π/2e[S5]π/2M =




0 −1 0 0.095
1 0 0 0.109
0 0 1 0.988
0 0 0 1




as shown in Figure 4.7.

4.1.3 Second Formulation: Screw Axes in the End-Effector
Frame

The matrix identity eM
−1PM = M−1ePM (Proposition 3.10) can also be ex-

pressed as MeM
−1PM = ePM . Beginning with the rightmost term of the pre-

viously derived product of exponentials formula, if we repeatedly apply this
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• Velocity Kinematics: How does the velocity of {b} relate to the joint
velocities θ̇1, . . . , θ̇n

• This depends on how to represent {b}’s velocity
- Twist representation → Geometric Jacobian

- Local coordinate of SE(3) → Analytic Jacobian
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Simple Illustration Example: Geometric Jacobian (1/2)
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Simple Illustration Example: Geometric Jacobian (2/2)
•
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Geometric Jacobian: General Case (1/3)

• Let V = (ω, v) be the end-effector twist (coordinate-free notation), we aim to
find J(θ) such that

V = J(θ)θ̇ = J1(θ)θ̇1 + · · ·+ Jn(θ)θ̇n

• The ith column Ji(θ) is the end-effector velocity when the robot is rotating
about Si at unit speed θ̇i = 1 while all other joints do not move (i.e. θ̇j = 0
for j ̸= i).

• Therefore, in coordinate free notation, Ji is just the screw axis of joint i:

Ji(θ) = Si(θ)
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Geometric Jacobian: General Case (2/3)
• The actual coordinate of Si depends on θ as well as the reference frame.

• The simplest way to write Jacobian is to use local coordinate:

iJi =
iSi, i = 1, . . . , n

• In fixed frame {0}, we have

0Ji(θ) =
0Xi(θ)

iSi, i = 1, . . . , n (1)

• Recall: 0Xi is the change of coordinate matrix for spatial velocities.

• Assume θ = (θ1, . . . , θn), then

0Ti(θ) = e[
0S̄1]θ1 · · · e[0S̄i]θiM ⇒ 0Xi(θ) =

[
Ad0Ti(θ)

]
(2)
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Geometric Jacobian: General Case (3/3)
• The Jacobian formula (1) with (2) is conceptually simple, but can be

cumbersome for calculation. We now derive a recursive Jacobian formula

• Note: 0Ji(θ) =
0Si(θ)

- For i = 1, 0S1(θ) =
0S1(0) = 0S̄1 (independent of θ)

- For i = 2, 0S2(θ) =
0S1(θ1) =

[
AdT̂ (θ1)

]
0S̄2, where T̂ (θ1) ≜ e[

0S̄1]θ1

- For general i, we have

0Ji(θ) =
0Si(θ) =

[
AdT̂ (θ1,...,θi−1)

]
0S̄i

where T̂ (θ1, . . . , θi−1) ≜ e[
0S̄1]θ1 · · · e[

0S̄i−1]θi−1

(3)
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Geometric Jacobian Example Chapter 5. Velocity Kinematics and Statics 181

θ1

θ2

θ3

θ4

x̂

ŷẑ
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Figure 5.7: Space Jacobian for a spatial RRRP chain.

• Since the final joint is prismatic, ωs4 = (0, 0, 0), and the joint-axis direction
is given by vs4 = (0, 0, 1).

The space Jacobian is therefore

Js(θ) =




0 0 0 0
0 0 0 0
1 1 1 0
0 L1s1 L1s1 + L2s12 0
0 −L1c1 −L1c1 − L2c12 0
0 0 0 1



.

Example 5.3 (Space Jacobian for a spatial RRPRRR chain). We now derive
the space Jacobian for the spatial RRPRRR chain of Figure 5.8. The base frame
is chosen as shown in the figure.

• The first joint axis is in the direction ωs1 = (0, 0, 1). Choosing q1 =
(0, 0, L1), we get vs1 = −ω1 × q1 = (0, 0, 0).

• The second joint axis is in the direction ωs2 = (−c1,−s1, 0). Choosing
q2 = (0, 0, L1), we get vs2 = −ω2 × q2 = (L1s1,−L1c1, 0).
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Analytic Jacobian

• Let x ∈ Rp be the task space variable of interest with desired reference xd
- E.g.: x can be Cartesian + Euler angle of end-effector frame

- p < 6 is allowed, which means a partial parameterization of SE(3), e.g. we only
care about the position or the orientation of the end-effector frame

• Analytic Jacobian: ẋ = Ja(θ)θ̇

• Recall Geometric Jacobian: V =

[
ω
v

]
= J(θ)θ̇

• They are related by:

Ja(θ) = E(x)J(θ) = E(θ)J(θ)

- E(x) can be easily found with given parameterization x
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Simple Illustration Example: Analytic Jacobian (1/3)
θ1

θ2

θ3

θ4

x̂

ŷẑ
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Figure 5.1: (Left) A 2R robot arm. (Right) Columns 1 and 2 of the Jacobian
correspond to the endpoint velocity when θ̇1 = 1 (and θ̇2 = 0) and when θ̇2 = 1 (and
θ̇1 = 0), respectively.

side of Figure 5.1) with forward kinematics given by

x1 = L1 cos θ1 + L2 cos(θ1 + θ2)

x2 = L1 sin θ1 + L2 sin(θ1 + θ2).

Differentiating both sides with respect to time yields

ẋ1 = −L1θ̇1 sin θ1 − L2(θ̇1 + θ̇2) sin(θ1 + θ2)

ẋ2 = L1θ̇1 cos θ1 + L2(θ̇1 + θ̇2) cos(θ1 + θ2),

which can be rearranged into an equation of the form ẋ = J(θ)θ̇:

[
ẋ1

ẋ2

]
=

[
−L1 sin θ1 − L2 sin(θ1 + θ2) −L2 sin(θ1 + θ2)
L1 cos θ1 + L2 cos(θ1 + θ2) L2 cos(θ1 + θ2)

] [
θ̇1

θ̇2

]
. (5.1)

Writing the two columns of J(θ) as J1(θ) and J2(θ), and the tip velocity ẋ as
vtip, Equation (5.1) becomes

vtip = J1(θ)θ̇1 + J2(θ)θ̇2. (5.2)

As long as J1(θ) and J2(θ) are not collinear, it is possible to generate a tip
velocity vtip in any arbitrary direction in the x1–x2-plane by choosing appropri-

ate joint velocities θ̇1 and θ̇2. Since J1(θ) and J2(θ) depend on the joint values
θ1 and θ2, one may ask whether there are any configurations at which J1(θ)
and J2(θ) become collinear. For our example the answer is yes: if θ2 is 0◦ or
180◦ then, regardless of the value of θ1, J1(θ) and J2(θ) will be collinear and
the Jacobian J(θ) becomes a singular matrix. Such configurations are therefore
called singularities; they are characterized by a situation where the robot tip
is unable to generate velocities in certain directions.
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0pb,x=L1 cos(θ1)+L2 cos(θ1+θ2)

0pb,y=L1 sin(θ1)+L2 sin(θ1+θ2)

0pb,z=L0
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Simple Illustration Example: Analytic Jacobian (2/3)
•
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Simple Illustration Example: Analytic Jacobian (3/3)
•
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More Discussions

•
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