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How to Solve Linear Differential Equations?

• Consider a scalar linear system: z(t) ∈ R and a ∈ R is a constant

ż(t) = az(t), with initial condition z(0) = z0 (1)

• The above ODE has a unique solution:

• What about general linear systems? ẋ = Ax+Bu
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What is the ”Euler’s Number” e?

• What is the number “e”?
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Complex Exponential

• For real variable x ∈ R, Taylor series expansion for ex around x = 0:

ex =

∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+

x3

3!
+ · · ·

• This can be extended to complex variables:

ez =

∞∑
k=0

zk

k!
= 1 + z +

z2

2!
+

z3

3!
+ · · ·

This power series is well defined for all z ∈ C

• In particular, we have ejθ = 1 + jθ − θ2

2 − j θ3

3! + · · ·

• Comparing with Taylor expansions for cos(θ) and sin(θ) leads to the Euler’s
Formula
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Matrix Exponential Definition

• Similar to the real and complex cases, we can define the so-called matrix
exponential

eA ≜
∞∑
k=0

Ak

k!
= I +A+

A2

2!
+

A3

3!
+ · · ·

• This power series is well defined for any finite square matrix A ∈ Rn×n.
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Some Important Properties of Matrix Exponential

• AeA = eAA

• eAeB = eA+B if AB = BA

• If A = PDP−1, then eA = PeDP−1

• For every t, τ ∈ R, eAteAτ = eA(t+τ)

•
(
eA

)−1
= e−A
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Autonomous Linear Systems

ẋ(t) = Ax(t), with initial condition x(0) = x0 (2)

• x(t) ∈ Rn, A ∈ Rn×n is constant matrix, x0 ∈ Rn is given.

• With the definition of matrix exponential, we can show that the solution
to (2) is given by

x(t) = eAtx0
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Computation of Matrix Exponential

• Directly from definition

• For diagonalizable matrix:

• Using Padé approximation
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Skew Symmetric Matrices

• Recall that cross product is a special linear transformation.

• For any ω ∈ Rn, there is a matrix [ω] ∈ Rn×n such that ω × p = [ω]p

ω =

 ω1

ω2

ω3

↔ [ω] =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



• Note that [ω] = −[ω]T ← skew symmetric

• [ω] is called a skew-symmetric matrix representation of the vector ω

• The set of skew-symmetric matrices in: so(n) ≜ {S ∈ Rn×n : ST = −S}

• We are interested in case n = 2, 3
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Rotation Operation via Differential Equation

• Consider a point initially located at p0 at time t = 0

• Rotate the point with unit angular velocity ω̂. Assuming the rotation axis
passing through the origin, the motion is described by

ṗ(t) = ω̂ × p(t) = [ω̂]p(t), with p(0) = p0 (3)

• This is a linear ODE with solution: p(t) = e[ω̂]tp0

• After t = θ, the point has been rotated by θ degree. Note p(θ) = e[ω̂]θp0

• Rot(ω̂, θ) ≜ e[ω̂]θ can be viewed as a rotation operator that rotates a point
about ω̂ through θ degree
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Rotation Matrix as a Rotation Operator (1/3)

• Every rotation matrix R can be written as R = Rot(ω̂, θ) ≜ e[ω̂]θ, i.e., it
represents a rotation operation about ω̂ by θ.

• We have seen how to use R to represent frame orientation and change of
coordinate between different frames. They are quite different from the
operator interpretation of R.

• To apply the rotation operation, all the vectors/matrices have to be
expressed in the same reference frame (this is clear from Eq (3))
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Rotation Matrix as a Rotation Operator (2/3)

• For example, assume R =

 1 0 0
0 0 −1
0 1 0

 = Rot(x̂;π/2)

• Consider a relation q = Rp:

- Change reference frame interpretation :

- Rotation operator interpretation:
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Rotation Matrix as a Rotation Operator (3/3)
• Consider the frame operation:

- Change of reference frame:RB = RRA

- Rotating a frame: R′
A = RRA
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Rotation Matrix Properties

• RTR = I

• R1R1 ∈ SO(3), if R1, R2 ∈ SO(3)

• ∥Rp−Rq∥ = ∥p− q∥

• R(v × w) = (Rv)× (Rw)

• R[w]RT = [Rw]
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Rotation Operator in Different Frames (1/2)

• Consider two frames {A} and {B}, the actual numerical values of the
operator Rot(ω̂, θ) depend on both the reference frame to represent ω̂ and
the reference frame to represent the operator itself.

• Consider a rotation axis ω̂ (coordinate free vector), with {A}-frame
coordinate Aω̂ and {B}-frame coordinate Bω̂. We know

Aω̂ =ARB
Bω̂

• Let BRot(Bω̂, θ) and ARot(Aω̂, θ) be the two rotation matrices, representing
the same rotation operation Rot(ω̂, θ) in frames {A} and {B}.
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Rotation Operator in Different Frames (2/2)
• We have the relation:

ARot(Aω̂, θ) =ARB
BRot(Bω̂, θ)BRA
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Rigid-Body Operation via Differential Equation (1/3)

• Recall: Every R ∈ SO(3) can be viewed as the state transition matrix
associated with the rotation ODE(3). It maps the initial position to the
current position (after the rotation motion)

- p(θ) = Rot(ω̂, θ)p0 viewed as a solution to ṗ(t) = [ω̂]p(t) with p(0) = p0 at
t = θ.

- The above relation requires that the rotation axis passes through the origin.

• We can obtain similar ODE characterization for T ∈ SE(3), which will lead
to exponential coordinate of SE(3)
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Rigid-Body Operation via Differential Equation (2/3)
• Recall: Theorem (Chasles): Every rigid body motion can be realized by a

screw motion

• Consider a point p undergoes a screw motion with screw axis S and unit
speed (θ̇ = 1). Let the corresponding twist be V = S = (ω, v). The motion
can be described by the following ODE.

ṗ(t) = ω × p(t) + v ⇒
[

ṗ(t)
0

]
=

[
[ω] v
0 0

] [
p(t)
1

]
(4)

• Solution to (4) in homogeneous coordinate is:[
p(t)
1

]
= exp

([
[ω] v
0 0

]
t

)[
p(0)
1

]
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Rigid-Body Operation via Differential Equation (3/3)
• For any twist V = (ω, v), let [V] be its matrix representation

[V] =
[

[ω] v
0 0

]

• The above definition also applies to a screw axis S = (ω, v)

• With this notation, the solution to (4) is p̃(t) = e[S]tp̃(0)

• Fact: e[S]t ∈ SE(3) is always a valid homogeneous transformation matrix.

• Fact: Any T ∈ SE(3) can be written as T = e[S]t, i.e., it can be viewed as
an operator that moves a point/frame along the screw axis at unit speed for
time t
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se(3)

• Similar to so(3), we can define se(3):

se(3) = {([ω], v) : [ω] ∈ so(3), v ∈ R3}

• se(3) contains all matrix representation of twists or equivalently all twists.

• In some references, [V] is called a twist.

• Sometimes, we may abuse notation by writing V ∈ se(3).
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Homogeneous Transformation as Rigid-Body Operator

• ODE for rigid motion under V = (ω, v)

ṗ = v + ω × p ⇒ ˙̃p(t) =

[
[ω] v
0 0

]
p̃(t)⇒ p̃(t) = e[V]tp̃(0)

• Consider “unit velocity” V = S, then time t means degree

• p̃′ = T p̃: “rotate” p about screw axis S by θ degree

• TTA: “rotate” {A}-frame about S by θ degree
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Rigid-Body Operator in Different Frames

• Expression of T in another frame (other than {O}):

T ↔ T−1
B TTB

operation in {O} operation in {B}
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Rigid Operation on Screw Axis

• Consider an arbitrary screw axis S, suppose the axis has gone through a rigid
transformation T = (R, p) and the resulting new screw axis is S ′, then

S ′ = [AdT ]S

proof:
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More Space
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